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Glossary

This glossary defines some specific terms as the Lead Authors 
intend them to be interpreted in the context of this report. Glos-
sary entries (highlighted in bold) are by preference subjects; a 
main entry can contain subentries, in bold and italic, for example, 
Primary Energy is defined under the entry Energy. Blue, itali-
cized words indicate that the term is defined in the Glossary. The 
glossary is followed by a list of acronyms and chemical symbols. 
Please refer to Annex II for standard units, prefixes, and unit con-
version (Section A.II.1) and for regions and country groupings 
(Section A.II.2).

Abrupt climate change: A large-scale change in the climate system 
that takes place over a few decades or less, persists (or is anticipated 
to persist) for at least a few decades, and causes substantial disrup-
tions in human and natural systems. See also Climate threshold.

Adaptability: See Adaptive capacity. 

Adaptation: The process of adjustment to actual or expected climate 
and its effects. In human systems, adaptation seeks to moderate or 
avoid harm or exploit beneficial opportunities. In some natural sys-
tems, human intervention may facilitate adjustment to expected cli-
mate and its effects.1 

Adaptation Fund: A Fund established under the Kyoto Protocol in 
2001 and officially launched in 2007. The Fund finances adaptation 
projects and programmes in developing countries that are Parties to 
the Kyoto Protocol. Financing comes mainly from sales of Certified 
Emissions Reductions (CERs) and a share of proceeds amounting to 
2 % of the value of CERs issued each year for Clean Development 
Mechanism (CDM) projects. The Adaptation Fund can also receive 
funds from government, private sector, and individuals.

Adaptive capacity: The ability of systems, institutions, humans, and 
other organisms to adjust to potential damage, to take advantage of 
opportunities, or to respond to consequences.2 

Additionality: Mitigation projects (e. g., under the Kyoto Mecha-
nisms), mitigation policies, or climate finance are additional if they go 
beyond a business-as-usual level, or baseline. Additionality is required 
to guarantee the environmental integrity of project-based offset mech-
anisms, but difficult to establish in practice due to the counterfactual 
nature of the baseline.

1	 Reflecting progress in science, this glossary entry differs in breadth and focus from 
the entry used in the Fourth Assessment Report and other IPCC reports.

2	 This glossary entry builds from definitions used in previous IPCC reports and the 
Millennium Ecosystem Assessment (MEA, 2005).

Adverse side-effects: The negative effects that a policy or measure 
aimed at one objective might have on other objectives, without yet 
evaluating the net effect on overall social welfare. Adverse side-effects 
are often subject to uncertainty and depend on, among others, local 
circumstances and implementation practices. See also Co-benefits, 
Risk, and Risk tradeoff.

Aerosol: A suspension of airborne solid or liquid particles, with a 
typical size between a few nanometres and 10 μm that reside in the 
atmosphere for at least several hours. For convenience the term aero-
sol, which includes both the particles and the suspending gas, is often 
used in this report in its plural form to mean aerosol particles. Aerosols 
may be of either natural or anthropogenic origin. Aerosols may influ-
ence climate in several ways: directly through scattering and absorbing 
radiation, and indirectly by acting as cloud condensation nuclei or ice 
nuclei, modifying the optical properties and lifetime of clouds. Atmo-
spheric aerosols, whether natural or anthropogenic, originate from two 
different pathways: emissions of primary particulate matter (PM), and 
formation of secondary PM from gaseous precursors. The bulk of aero-
sols are of natural origin. Some scientists use group labels that refer 
to the chemical composition, namely: sea salt, organic carbon, black 
carbon (BC), mineral species (mainly desert dust), sulphate, nitrate, and 
ammonium. These labels are, however, imperfect as aerosols combine 
particles to create complex mixtures. See also Short-lived climate pol-
lutants (SLCPs).

Afforestation: Planting of new forests on lands that historically have 
not contained forests. Afforestation projects are eligible under a num-
ber of schemes including, among others, Joint Implementation (JI) and 
the Clean Development Mechanism (CDM) under the Kyoto Protocol 
for which particular criteria apply (e. g., proof must be given that the 
land was not forested for at least 50 years or converted to alternative 
uses before 31 December 1989).

For a discussion of the term forest and related terms such as afforesta-
tion, reforestation and deforestation, see the IPCC Special Report on 
Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the 
report on Definitions and Methodological Options to Inventory Emis-
sions from Direct Human-induced Degradation of Forests and Deveg-
etation of Other Vegetation Types (IPCC, 2003).

Agreement: In this report, the degree of agreement is the level of con-
currence in the literature on a particular finding as assessed by the 
authors. See also Evidence, Confidence, Likelihood, and Uncertainty.

Agricultural emissions: See Emissions.

Agriculture, Forestry and Other Land Use (AFOLU): Agriculture, 
Forestry and Other Land Use plays a central role for food security and 
sustainable development (SD). The main mitigation options within 
AFOLU involve one or more of three strategies: prevention of emis-
sions to the atmosphere by conserving existing carbon pools in soils 
or vegetation or by reducing emissions of methane (CH4) and nitrous 
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oxide (N2O); sequestration — increasing the size of existing carbon 
pools, and thereby extracting carbon dioxide (CO2) from the atmo-
sphere; and substitution — substituting biological products for fossil 
fuels or energy-intensive products, thereby reducing CO2 emissions. 
Demand-side measures (e. g., by reducing losses and wastes of food, 
changes in human diet, or changes in wood consumption) may also 
play a role. FOLU (Forestry and Other Land Use) — also referred to as 
LULUCF (Land use, land-use change, and forestry) — is the subset of 
AFOLU emissions and removals of greenhouse gases (GHGs) result-
ing from direct human-induced land use, land-use change and forestry 
activities excluding agricultural emissions.

Albedo: The fraction of solar radiation reflected by a surface or object, 
often expressed as a percentage. Snow-covered surfaces have a high 
albedo, the albedo of soils ranges from high to low, and vegetation-
covered surfaces and oceans have a low albedo. The earth’s planetary 
albedo varies mainly through varying cloudiness, snow, ice, leaf area 
and land cover changes. 

Alliance of Small Island States (AOSIS): The Alliance of Small Island 
States (AOSIS) is a coalition of small islands and low-lying coastal 
countries with a membership of 44 states and observers that share 
and are active in global debates and negotiations on the environment, 
especially those related to their vulnerability to the adverse effects of 
climate change. Established in 1990, AOSIS acts as an ad-hoc lobby and 
negotiating voice for small island development states (SIDS) within the 
United Nations including the United Nations Framework Convention 
on Climate Change (UNFCCC) climate change negotiations.

Ancillary benefits: See Co-benefits. 

Annex I Parties / countries: The group of countries listed in Annex 
I to the United Nations Framework Convention on Climate Change 
(UNFCCC). Under Articles 4.2 (a) and 4.2 (b) of the UNFCCC, Annex 
I Parties were committed to adopting national policies and measures 
with the non-legally binding aim to return their greenhouse gas (GHG) 
emissions to 1990 levels by 2000. The group is largely similar to the 
Annex B Parties to the Kyoto Protocol that also adopted emissions 
reduction targets for 2008 – 2012. By default, the other countries are 
referred to as Non-Annex I Parties.

Annex II Parties / countries: The group of countries listed in Annex 
II to the United Nations Framework Convention on Climate Change 
(UNFCCC). Under Article 4 of the UNFCCC, these countries have a spe-
cial obligation to provide financial resources to meet the agreed full 
incremental costs of implementing measures mentioned under Article 
12, paragraph 1. They are also obliged to provide financial resources, 
including for the transfer of technology, to meet the agreed incremen-
tal costs of implementing measures covered by Article 12, paragraph 
1 and agreed between developing country Parties and international 
entities referred to in Article 11 of the UNFCCC. This group of coun-
tries shall also assist countries that are particularly vulnerable to the 
adverse effects of climate change. 

Annex B Parties / countries: The subset of Annex I Parties that have 
accepted greenhouse gas (GHG) emission reduction targets for the 
period 2008 – 2012 under Article 3 of the Kyoto Protocol. By default, 
the other countries are referred to as Non-Annex I Parties. 

Anthropogenic emissions: See Emissions.

Assigned Amount (AA): Under the Kyoto Protocol, the AA is the 
quantity of greenhouse gas (GHG) emissions that an Annex B country 
has agreed to as its cap on its emissions in the first five-year commit-
ment period (2008 – 2012). The AA is the country’s total GHG emissions 
in 1990 multiplied by five (for the five-year commitment period) and by 
the percentage it agreed to as listed in Annex B of the Kyoto Protocol 
(e. g., 92 % for the EU). See also Assigned Amount Unit (AAU).

Assigned Amount Unit (AAU): An AAU equals 1 tonne (metric ton) of 
CO2-equivalent emissions calculated using the Global Warming Poten-
tial (GWP). See also Assigned Amount (AA).

Atmosphere: The gaseous envelope surrounding the earth, divided 
into five layers — the troposphere which contains half of the earth’s 
atmosphere, the stratosphere, the mesosphere, the thermosphere, 
and the exosphere, which is the outer limit of the atmosphere. The 
dry atmosphere consists almost entirely of nitrogen (78.1 % volume 
mixing ratio) and oxygen (20.9 % volume mixing ratio), together 
with a number of trace gases, such as argon (0.93 % volume mixing 
ratio), helium and radiatively active greenhouse gases (GHGs) such 
as carbon dioxide (CO2) (0.035 % volume mixing ratio) and ozone 
(O3). In addition, the atmosphere contains the GHG water vapour 
(H2O), whose amounts are highly variable but typically around 1 % 
volume mixing ratio. The atmosphere also contains clouds and aero-
sols.

Backstop technology: Models estimating mitigation often use an 
arbitrary carbon-free technology (often for power generation) that 
might become available in the future in unlimited supply over the hori-
zon of the model. This allows modellers to explore the consequences 
and importance of a generic solution technology without becoming 
enmeshed in picking the actual technology. This ‘backstop’ technology 
might be a nuclear technology, fossil technology with Carbon Dioxide 
Capture and Storage (CCS), solar energy, or something as yet unimag-
ined. The backstop technology is typically assumed either not to cur-
rently exist, or to exist only at higher costs relative to conventional 
alternatives.

Banking (of Assigned Amount Units)	: Any transfer of Assigned 
Amount Units (AAUs) from an existing period into a future commit-
ment period. According to the Kyoto Protocol [Article 3 (13)], Parties 
included in Annex I to the United Nations Framework Convention on 
Climate Change (UNFCCC) may save excess AAUs from the first com-
mitment period for compliance with their respective cap in subsequent 
commitment periods (post-2012).
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Baseline / reference: The state against which change is measured. 
In the context of transformation pathways, the term ‘baseline sce-
narios’ refers to scenarios that are based on the assumption that no 
mitigation policies or measures will be implemented beyond those that 
are already in force and / or are legislated or planned to be adopted. 
Baseline scenarios are not intended to be predictions of the future, 
but rather counterfactual constructions that can serve to highlight 
the level of emissions that would occur without further policy effort. 
Typically, baseline scenarios are then compared to mitigation scenar-
ios that are constructed to meet different goals for greenhouse gas 
(GHG) emissions, atmospheric concentrations, or temperature change. 
The term ‘baseline scenario’ is used interchangeably with ‘reference 
scenario’ and ‘no policy scenario’. In much of the literature the term 
is also synonymous with the term ‘business-as-usual (BAU) scenario,’ 
although the term ‘BAU’ has fallen out of favour because the idea of 
‘business-as-usual’ in century-long socioeconomic projections is hard 
to fathom. See also Climate scenario, Emission scenario, Representa-
tive concentration pathways (RCPs), Shared socio-economic pathways, 
Socio-economic scenarios, SRES scenarios, and Stabilization.

Behaviour: In this report, behaviour refers to human decisions and 
actions (and the perceptions and judgments on which they are based) 
that directly or indirectly influence mitigation or the effects of poten-
tial climate change impacts (adaptation). Human decisions and actions 
are relevant at different levels, from international, national, and sub-
national actors, to NGO, tribe, or firm-level decision makers, to com-
munities, households, and individual citizens and consumers. See also 
Behavioural change and Drivers of behaviour.

Behavioural change: In this report, behavioural change refers to 
alteration of human decisions and actions in ways that mitigate cli-
mate change and / or reduce negative consequences of climate change 
impacts. See also Drivers of behaviour.

Biochar: Biomass stabilization can be an alternative or enhancement 
to bioenergy in a land-based mitigation strategy. Heating biomass 
with exclusion of air produces a stable carbon-rich co-product (char). 
When added to soil a system, char creates a system that has greater 
abatement potential than typical bioenergy. The relative benefit of bio-
char systems is increased if changes in crop yield and soil emissions of 
methane (CH4) and nitrous oxide (N2O) are taken into account. 

Biochemical oxygen demand (BOD): The amount of dissolved oxy-
gen consumed by micro-organisms (bacteria) in the bio-chemical oxi-
dation of organic and inorganic matter in wastewater. See also Chemi-
cal oxygen demand (COD).

Biodiversity: The variability among living organisms from terrestrial, 
marine, and other ecosystems. Biodiversity includes variability at the 
genetic, species, and ecosystem levels.3

3	 This glossary entry builds from definitions used in the Global Biodiversity Assess-
ment (Heywood, 1995) and the Millennium Ecosystem Assessment (MEA, 2005).

Bioenergy: Energy derived from any form of biomass such as recently 
living organisms or their metabolic by-products.

Bioenergy and Carbon Dioxide Capture and Storage (BECCS): 
The application of Carbon Dioxide Capture and Storage (CCS) technol-
ogy to bioenergy conversion processes. Depending on the total life-
cycle emissions, including total marginal consequential effects (from 
indirect land use change (iLUC) and other processes), BECCS has the 
potential for net carbon dioxide (CO2) removal from the atmosphere. 
See also Sequestration.

Bioethanol: Ethanol produced from biomass (e. g., sugar cane or 
corn). See also Biofuel.

Biofuel: A fuel, generally in liquid form, produced from organic mat-
ter or combustible oils produced by living or recently living plants. 
Examples of biofuel include alcohol (bioethanol), black liquor from the 
paper-manufacturing process, and soybean oil.

First-generation manufactured biofuel: First-generation manu-
factured biofuel is derived from grains, oilseeds, animal fats, and 
waste vegetable oils with mature conversion technologies.

Second-generation biofuel: Second-generation biofuel uses 
non-traditional biochemical and thermochemical conversion pro-
cesses and feedstock mostly derived from the lignocellulosic frac-
tions of, for example, agricultural and forestry residues, municipal 
solid waste, etc.

Third-generation biofuel: Third-generation biofuel would 
be derived from feedstocks such as algae and energy crops by 
advanced processes still under development. 

These second- and third-generation biofuels produced through new 
processes are also referred to as next-generation or advanced biofuels, 
or advanced biofuel technologies.

Biomass: The total mass of living organisms in a given area or volume; 
dead plant material can be included as dead biomass. In the context of 
this report, biomass includes products, by-products, and waste of bio-
logical origin (plants or animal matter), excluding material embedded 
in geological formations and transformed to fossil fuels or peat. 

Traditional biomass: Traditional biomass refers to the bio-
mass — fuelwood, charcoal, agricultural residues, and animal 
dung — used with the so-called traditional technologies such as 
open fires for cooking, rustic kilns and ovens for small industries. 
Widely used in developing countries, where about 2.6 billion peo-
ple cook with open wood fires, and hundreds of thousands small-
industries. The use of these rustic technologies leads to high pol-
lution levels and, in specific circumstances, to forest degradation 
and deforestation. There are many successful initiatives around 
the world to make traditional biomass burned more efficiently 
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and cleanly using efficient cookstoves and kilns. This last use of 
traditional biomass is sustainable and provides large health and 
economic benefits to local populations in developing countries, 
particularly in rural and peri-urban areas. 

Modern biomass: All biomass used in high efficiency conversion 
systems.

Biomass burning: Biomass burning is the burning of living and dead 
vegetation. 

Biosphere (terrestrial and marine): The part of the earth system 
comprising all ecosystems and living organisms, in the atmosphere, on 
land (terrestrial biosphere) or in the oceans (marine biosphere), includ-
ing derived dead organic matter, such as litter, soil organic matter and 
oceanic detritus.

Black carbon (BC): Operationally defined aerosol species based on 
measurement of light absorption and chemical reactivity and / or ther-
mal stability. It is sometimes referred to as soot. BC is mostly formed 
by the incomplete combustion of fossil fuels, biofuels, and biomass 
but it also occurs naturally. It stays in the atmosphere only for days or 
weeks. It is the most strongly light-absorbing component of particu-
late matter (PM) and has a warming effect by absorbing heat into the 
atmosphere and reducing the albedo when deposited on ice or snow.

Burden sharing (also referred to as Effort sharing): In the context 
of mitigation, burden sharing refers to sharing the effort of reducing 
the sources or enhancing the sinks of greenhouse gases (GHGs) from 
historical or projected levels, usually allocated by some criteria, as well 
as sharing the cost burden across countries.  

Business-as-usual (BAU): See Baseline / reference.

Cancún Agreements: A set of decisions adopted at the 16th Session 
of the Conference of the Parties (COP) to the United Nations Frame-
work Convention on Climate Change (UNFCCC), including the follow-
ing, among others: the newly established Green Climate Fund (GCF), 
a newly established technology mechanism, a process for advancing 
discussions on adaptation, a formal process for reporting mitigation 
commitments, a goal of limiting global mean surface temperature 
increase to 2 °C, and an agreement on MRV — Measuring, Reporting 
and Verifying for those countries that receive international support for 
their mitigation efforts.

Cancún Pledges: During 2010, many countries submitted their exist-
ing plans for controlling greenhouse gas (GHG) emissions to the Cli-
mate Change Secretariat and these proposals have now been formally 
acknowledged under the United Nations Framework Convention on 
Climate Change (UNFCCC). Developed countries presented their plans 
in the shape of economy-wide targets to reduce emissions, mainly 
up to 2020, while developing countries proposed ways to limit their 
growth of emissions in the shape of plans of action.

Cap, on emissions: Mandated restraint as an upper limit on emis-
sions within a given period. For example, the Kyoto Protocol mandates 
emissions caps in a scheduled timeframe on the anthropogenic green-
house gas (GHG) emissions released by Annex B countries. 

Carbon budget: The area under a greenhouse gas (GHG) emissions 
trajectory that satisfies assumptions about limits on cumulative emis-
sions estimated to avoid a certain level of global mean surface temper-
ature rise. Carbon budgets may be defined at the global level, national, 
or sub-national levels.

Carbon credit: See Emission allowance.

Carbon cycle: The term used to describe the flow of carbon (in various 
forms, e. g., as carbon dioxide) through the atmosphere, ocean, terres-
trial and marine biosphere and lithosphere. In this report, the reference 
unit for the global carbon cycle is GtC or GtCO2 (1 GtC corresponds 
to 3.667 GtCO2). Carbon is the major chemical constituent of most 
organic matter and is stored in the following major reservoirs: organic 
molecules in the biosphere, carbon dioxide (CO2) in the atmosphere, 
organic matter in the soils, in the lithosphere, and in the oceans.

Carbon dioxide (CO2): A naturally occurring gas, also a by-product 
of burning fossil fuels from fossil carbon deposits, such as oil, gas and 
coal, of burning biomass, of land use changes (LUC) and of industrial 
processes (e. g., cement production). It is the principal anthropogenic 
greenhouse gas (GHG) that affects the earth’s radiative balance. It is 
the reference gas against which other GHGs are measured and there-
fore has a Global Warming Potential (GWP) of 1. See Annex II.9.1 for 
GWP values for other GHGs.

Carbon Dioxide Capture and Storage (CCS): A process in which 
a relatively pure stream of carbon dioxide (CO2) from industrial and 
energy-related sources is separated (captured), conditioned, com-
pressed, and transported to a storage location for long-term isolation 
from the atmosphere. See also Bioenergy and carbon capture and stor-
age (BECCS), CCS-ready, and Sequestration.

Carbon dioxide fertilization: The enhancement of the growth of 
plants as a result of increased atmospheric carbon dioxide (CO2) con-
centration.

Carbon Dioxide Removal (CDR): Carbon Dioxide Removal methods 
refer to a set of techniques that aim to remove carbon dioxide (CO2) 
directly from the atmosphere by either (1) increasing natural sinks for 
carbon or (2) using chemical engineering to remove the CO2, with the 
intent of reducing the atmospheric CO2 concentration. CDR methods 
involve the ocean, land, and technical systems, including such meth-
ods as iron fertilization, large-scale afforestation, and direct capture 
of CO2 from the atmosphere using engineered chemical means. Some 
CDR methods fall under the category of geoengineering, though this 
may not be the case for others, with the distinction being based on 
the magnitude, scale, and impact of the particular CDR activities. The 
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boundary between CDR and mitigation is not clear and there could be 
some overlap between the two given current definitions (IPCC, 2012, 
p. 2). See also Solar Radiation Management (SRM).

Carbon footprint: Measure of the exclusive total amount of emis-
sions of carbon dioxide (CO2) that is directly and indirectly caused by 
an activity or is accumulated over the life stages of a product (Wied-
mann and Minx, 2008).

Carbon intensity: The amount of emissions of carbon dioxide (CO2) 
released per unit of another variable such as gross domestic product 
(GDP), output energy use, or transport. 

Carbon leakage: See Leakage.

Carbon pool: See Reservoir.

Carbon price: The price for avoided or released carbon dioxide (CO2) 
or CO2-equivalent emissions. This may refer to the rate of a carbon 
tax, or the price of emission permits. In many models that are used to 
assess the economic costs of mitigation, carbon prices are used as a 
proxy to represent the level of effort in mitigation policies.

Carbon sequestration: See Sequestration.

Carbon tax: A levy on the carbon content of fossil fuels. Because vir-
tually all of the carbon in fossil fuels is ultimately emitted as carbon 
dioxide (CO2), a carbon tax is equivalent to an emission tax on CO2 
emissions.

CCS-ready: New large-scale, stationary carbon dioxide (CO2) point 
sources intended to be retrofitted with Carbon Dioxide Capture and 
Storage (CCS) could be designed and located to be ‘CCS-ready’ by 
reserving space for the capture installation, designing the unit for opti-
mal performance when capture is added, and siting the plant to enable 
access to storage locations. See also Bioenergy and Carbon Dioxide 
Capture and Storage (BECCS).

Certified Emission Reduction Unit (CER): Equal to one metric 
tonne of CO2-equivalent emissions reduced or of carbon dioxide (CO2) 
removed from the atmosphere through the Clean Development Mech-
anism (CDM) (defined in Article 12 of the Kyoto Protocol) project, cal-
culated using Global Warming Potentials (GWP). See also Emissions 
Reduction Units (ERU) and Emissions trading.

Chemical oxygen demand (COD): The quantity of oxygen required 
for the complete oxidation of organic chemical compounds in water; 
used as a measure of the level of organic pollutants in natural and 
waste waters. See also Biochemical oxygen demand (BOD).

Chlorofluorocarbons (CFCs): A chlorofluorocarbon is an organic 
compound that contains chlorine, carbon, hydrogen, and fluorine and 
is used for refrigeration, air conditioning, packaging, plastic foam, 

insulation, solvents, or aerosol propellants. Because they are not 
destroyed in the lower atmosphere, CFCs drift into the upper atmo-
sphere where, given suitable conditions, they break down ozone (O3). 
It is one of the greenhouse gases (GHGs) covered under the 1987 
Montreal Protocol as a result of which manufacturing of these gases 
has been phased out and they are being replaced by other compounds, 
including hydrofluorocarbons (HFCs) which are GHGs covered under 
the Kyoto Protocol.

Clean Development Mechanism (CDM): A mechanism defined 
under Article 12 of the Kyoto Protocol through which investors (gov-
ernments or companies) from developed (Annex B) countries may 
finance greenhouse gas (GHG) emission reduction or removal projects 
in developing (Non-Annex B) countries, and receive Certified Emission 
Reduction Units (CERs) for doing so. The CERs can be credited towards 
the commitments of the respective developed countries. The CDM is 
intended to facilitate the two objectives of promoting sustainable 
development (SD) in developing countries and of helping industrial-
ized countries to reach their emissions commitments in a cost-effective 
way. See also Kyoto Mechanisms.

Climate: Climate in a narrow sense is usually defined as the average 
weather, or more rigorously, as the statistical description in terms of 
the mean and variability of relevant quantities over a period of time 
ranging from months to thousands or millions of years. The classical 
period for averaging these variables is 30 years, as defined by the 
World Meteorological Organization. The relevant quantities are most 
often surface variables such as temperature, precipitation and wind. 
Climate in a wider sense is the state, including a statistical description, 
of the climate system.

Climate change: Climate change refers to a change in the state of 
the climate that can be identified (e. g., by using statistical tests) by 
changes in the mean and / or the variability of its properties, and that 
persists for an extended period, typically decades or longer. Climate 
change may be due to natural internal processes or external forcings 
such as modulations of the solar cycles, volcanic eruptions and persis-
tent anthropogenic changes in the composition of the atmosphere or 
in land use. Note that the United Nations Framework Convention on 
Climate Change (UNFCCC), in its Article 1, defines climate change as: 
‘a change of climate which is attributed directly or indirectly to human 
activity that alters the composition of the global atmosphere and which 
is in addition to natural climate variability observed over comparable 
time periods’. The UNFCCC thus makes a distinction between climate 
change attributable to human activities altering the atmospheric com-
position, and climate variability attributable to natural causes. See also 
Climate change commitment.

Climate change commitment: Due to the thermal inertia of the 
ocean and slow processes in the cryosphere and land surfaces, the cli-
mate would continue to change even if the atmospheric composition 
were held fixed at today’s values. Past change in atmospheric com-
position leads to a committed climate change, which continues for 
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as long as a radiative imbalance persists and until all components of 
the climate system have adjusted to a new state. The further change 
in temperature after the composition of the atmosphere is held con-
stant is referred to as the constant composition temperature commit-
ment or simply committed warming or warming commitment. Climate 
change commitment includes other future changes, for example in 
the hydrological cycle, in extreme weather events, in extreme climate 
events, and in sea level change. The constant emission commitment is 
the committed climate change that would result from keeping anthro-
pogenic emissions constant and the zero emission commitment is the 
climate change commitment when emissions are set to zero. See also 
Climate change.

Climate (change) feedback: An interaction in which a perturbation 
in one climate quantity causes a change in a second, and the change 
in the second quantity ultimately leads to an additional change in 
the first. A negative feedback is one in which the initial perturbation 
is weakened by the changes it causes; a positive feedback is one in 
which the initial perturbation is enhanced. In this Assessment Report, a 
somewhat narrower definition is often used in which the climate quan-
tity that is perturbed is the global mean surface temperature, which in 
turn causes changes in the global radiation budget. In either case, the 
initial perturbation can either be externally forced or arise as part of 
internal variability.

Climate engineering: See Geoengineering.

Climate finance: There is no agreed definition of climate finance. 
The term ‘climate finance’ is applied both to the financial resources 
devoted to addressing climate change globally and to financial flows 
to developing countries to assist them in addressing climate change. 
The literature includes several concepts in these categories, among 
which the most commonly used include:

Incremental costs: The cost of capital of the incremental invest-
ment and the change of operating and maintenance costs for a 
mitigation or adaptation project in comparison to a reference proj-
ect. It can be calculated as the difference of the net present values 
of the two projects. See also Additionality.

Incremental investment: The extra capital required for the initial 
investment for a mitigation or adaptation project in comparison to 
a reference project. See also Additionality.

Total climate finance: All financial flows whose expected effect is 
to reduce net greenhouse gas (GHG) emissions and / or to enhance 
resilience to the impacts of climate variability and the projected 
climate change. This covers private and public funds, domestic and 
international flows, expenditures for mitigation and adaptation to 
current climate variability as well as future climate change.

Total climate finance flowing to developing countries:The 
amount of the total climate finance invested in developing coun-

tries that comes from developed countries. This covers private and 
public funds. 

Private climate finance flowing to developing countries: 
Finance and investment by private actors in / from developed coun-
tries for mitigation and adaptation activities in developing coun-
tries.

Public climate finance flowing to developing countries: 
Finance provided by developed countries’ governments and bilat-
eral institutions as well as by multilateral institutions for mitiga-
tion and adaptation activities in developing countries. Most of the 
funds provided are concessional loans and grants.

Climate model (spectrum or hierarchy): A numerical representa-
tion of the climate system based on the physical, chemical and biologi-
cal properties of its components, their interactions and feedback pro-
cesses, and accounting for some of its known properties. The climate 
system can be represented by models of varying complexity, that is, 
for any one component or combination of components a spectrum or 
hierarchy of models can be identified, differing in such aspects as the 
number of spatial dimensions, the extent to which physical, chemical 
or biological processes are explicitly represented, or the level at which 
empirical parametrizations are involved. Coupled Atmosphere-Ocean 
General Circulation Models (AOGCMs) provide a representation of the 
climate system that is near or at the most comprehensive end of the 
spectrum currently available. There is an evolution towards more com-
plex models with interactive chemistry and biology. Climate models 
are applied as a research tool to study and simulate the climate, and 
for operational purposes, including monthly, seasonal and interannual 
climate predictions. 

Climate prediction: A climate prediction or climate forecast is the 
result of an attempt to produce (starting from a particular state of the 
climate system) an estimate of the actual evolution of the climate in 
the future, for example, at seasonal, interannual, or decadal time scales. 
Because the future evolution of the climate system may be highly sen-
sitive to initial conditions, such predictions are usually probabilistic in 
nature. See also Climate projection, and Climate scenario.

Climate projection: A climate projection is the simulated response of 
the climate system to a scenario of future emission or concentration of 
greenhouse gases (GHGs) and aerosols, generally derived using climate 
models. Climate projections are distinguished from climate predictions 
by their dependence on the emission / concentration / radiative forcing 
scenario used, which is in turn based on assumptions concerning, for 
example, future socioeconomic and technological developments that 
may or may not be realized. See also Climate scenario.

Climate scenario: A plausible and often simplified representation 
of the future climate, based on an internally consistent set of clima-
tological relationships that has been constructed for explicit use in 
investigating the potential consequences of anthropogenic climate 
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change, often serving as input to impact models. Climate projections 
often serve as the raw material for constructing climate scenarios, 
but climate scenarios usually require additional information such as 
the observed current climate. See also Baseline / reference, Emission 
scenario, Mitigation scenario, Representative concentration pathways 
(RCPs), Scenario, Shared socio-economic pathways, Socio-economic 
scenario, SRES scenarios, Stabilization, and Transformation pathway. 

Climate sensitivity: In IPCC reports, equilibrium climate sensitivity 
(units: °C) refers to the equilibrium (steady state) change in the annual 
global mean surface temperature following a doubling of the atmo-
spheric CO2-equivalent concentration. Owing to computational con-
straints, the equilibrium climate sensitivity in a climate model is some-
times estimated by running an atmospheric general circulation model 
(GCM) coupled to a mixed-layer ocean model, because equilibrium 
climate sensitivity is largely determined by atmospheric processes. 
Efficient models can be run to equilibrium with a dynamic ocean. The 
climate sensitivity parameter (units: °C (W m – 2) – 1) refers to the equilib-
rium change in the annual global mean surface temperature following 
a unit change in radiative forcing.

The effective climate sensitivity (units: °C) is an estimate of the global 
mean surface temperature response to doubled carbon dioxide (CO2) 
concentration that is evaluated from model output or observations for 
evolving non-equilibrium conditions. It is a measure of the strengths of 
the climate feedbacks at a particular time and may vary with forcing 
history and climate state, and therefore may differ from equilibrium 
climate sensitivity.

The transient climate response (units: °C) is the change in the global 
mean surface temperature, averaged over a 20-year period, centred at 
the time of atmospheric CO2 doubling, in a climate model simulation 
in which CO2 increases at 1 % yr – 1. It is a measure of the strength and 
rapidity of the surface temperature response to greenhouse gas (GHG) 
forcing.

Climate system: The climate system is the highly complex system 
consisting of five major components: the atmosphere, the hydrosphere, 
the cryosphere, the lithosphere and the biosphere, and the interactions 
between them. The climate system evolves in time under the influence 
of its own internal dynamics and because of external forcings such as 
volcanic eruptions, solar variations and anthropogenic forcings such 
as the changing composition of the atmosphere and land use change 
(LUC).

Climate threshold: A limit within the climate system that, when 
crossed, induces a non-linear response to a given forcing. See also 
Abrupt climate change.

Climate variability: Climate variability refers to variations in the 
mean state and other statistics (such as standard deviations, the occur-
rence of extremes, etc.) of the climate on all spatial and temporal 
scales beyond that of individual weather events. Variability may be due 

to natural internal processes within the climate system (internal vari-
ability), or to variations in natural or anthropogenic external forcing 
(external variability). See also Climate change.

CO2-equivalent concentration: The concentration of carbon dioxide 
(CO2) that would cause the same radiative forcing as a given mixture 
of CO2 and other forcing components. Those values may consider only 
greenhouse gases (GHGs), or a combination of GHGs, aerosols, and 
surface albedo changes. CO2-equivalent concentration is a metric for 
comparing radiative forcing of a mix of different forcing components 
at a particular time but does not imply equivalence of the correspond-
ing climate change responses nor future forcing. There is generally 
no connection between CO2-equivalent emissions and resulting CO2-
equivalent concentrations.

CO2-equivalent emission: The amount of carbon dioxide (CO2) emis-
sion that would cause the same integrated radiative forcing, over a 
given time horizon, as an emitted amount of a greenhouse gas (GHG) 
or a mixture of GHGs. The CO2-equivalent emission is obtained by mul-
tiplying the emission of a GHG by its Global Warming Potential (GWP) 
for the given time horizon (see Annex II.9.1 and WGI AR5 Table 8.A.1 
for GWP values of the different GHGs). For a mix of GHGs it is obtained 
by summing the CO2-equivalent emissions of each gas. CO2-equivalent 
emission is a common scale for comparing emissions of different GHGs 
but does not imply equivalence of the corresponding climate change 
responses. See also CO2-equivalent concentration.

Co-benefits: The positive effects that a policy or measure aimed at 
one objective might have on other objectives, without yet evaluating 
the net effect on overall social welfare. Co-benefits are often subject 
to uncertainty and depend on, among others, local circumstances and 
implementation practices. Co-benefits are often referred to as ancil-
lary benefits. See also Adverse side-effect, Risk, and Risk tradeoff.

Cogeneration: Cogeneration (also referred to as combined heat and 
power, or CHP) is the simultaneous generation and useful application 
of electricity and useful heat.

Combined-cycle gas turbine: A power plant that combines two pro-
cesses for generating electricity. First, fuel combustion drives a gas tur-
bine. Second, exhaust gases from the turbine are used to heat water to 
drive a steam turbine. 

Combined heat and power (CHP): See Cogeneration.

Computable General Equilibrium (CGE) Model: See Models.

Conference of the Parties (COP): The supreme body of the United 
Nations Framework Convention on Climate Change (UNFCCC), com-
prising countries with a right to vote that have ratified or acceded to 
the convention. See also Meeting of the Parties (CMP).
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Confidence: The validity of a finding based on the type, amount, 
quality, and consistency of evidence (e. g., mechanistic understanding, 
theory, data, models, expert judgment) and on the degree of agree-
ment. In this report, confidence is expressed qualitatively (Mastran-
drea et al., 2010). See WGI AR5 Figure 1.11 for the levels of confidence 
and WGI AR5 Table 1.2 for the list of likelihood qualifiers. See also 
Uncertainty.

Consumption-based accounting: Consumption-based accounting 
provides a measure of emissions released to the atmosphere in order 
to generate the goods and services consumed by a certain entity (e. g., 
person, firm, country, or region). See also Production-based account-
ing.

Contingent valuation method: An approach to quantitatively 
assess values assigned by people in monetary (willingness to pay) 
and non-monetary (willingness to contribute with time, resources 
etc.) terms. It is a direct method to estimate economic values for 
ecosystem and environmental services. In a survey, people are asked 
their willingness to pay / contribute for access to, or their willingness 
to accept compensation for removal of, a specific environmental ser-
vice, based on a hypothetical scenario and description of the environ-
mental service. 

Conventional fuels: See Fossil fuels.

Copenhagen Accord: The political (as opposed to legal) agreement 
that emerged at the 15th Session of the Conference of the Parties 
(COP) at which delegates ‘agreed to take note’ due to a lack of con-
sensus that an agreement would require. Some of the key elements 
include: recognition of the importance of the scientific view on the 
need to limit the increase in global mean surface temperature to 2° 
C; commitment by Annex I Parties to implement economy-wide emis-
sions targets by 2020 and non-Annex I Parties to implement mitiga-
tion actions; agreement to have emission targets of Annex I Parties 
and their delivery of finance for developing countries subject to Mea-
surement, Reporting and Verification (MRV) and actions by developing 
countries to be subject to domestic MRV; calls for scaled up financing 
including a fast track financing of USD 30 billion and USD 100 billion 
by 2020; the establishment of a new Green Climate Fund (GCF); and 
the establishment of a new technology mechanism. Some of these ele-
ments were later adopted in the Cancún Agreements.

Cost-benefit analysis (CBA): Monetary measurement of all negative 
and positive impacts associated with a given action. Costs and benefits 
are compared in terms of their difference and / or ratio as an indicator 
of how a given investment or other policy effort pays off seen from the 
society’s point of view.

Cost of conserved energy (CCE): See Levelized cost of conserved 
energy (LCCE).

Cost-effectiveness: A policy is more cost-effective if it achieves a 
goal, such as a given pollution abatement level, at lower cost. A criti-
cal condition for cost-effectiveness is that marginal abatement costs 
be equal among obliged parties. Integrated models approximate cost‐
effective solutions, unless they are specifically constrained to behave 
otherwise. Cost-effective mitigation scenarios are those based on a 
stylized implementation approach in which a single price on carbon 
dioxide (CO2) and other greenhouse gases (GHGs) is applied across the 
globe in every sector of every country and that rises over time in a way 
that achieves lowest global discounted costs.

Cost-effectiveness analysis (CEA): A tool based on constrained 
optimization for comparing policies designed to meet a prespecified 
target.

Crediting period, Clean Development Mechanism (CDM): The 
time during which a project activity is able to generate Certified Emis-
sion Reduction Units (CERs). Under certain conditions, the crediting 
period can be renewed up to two times.

Cropland management: The system of practices on land on which 
agricultural crops are grown and on land that is set aside or temporar-
ily not being used for crop production (UNFCCC, 2002).

Decarbonization: The process by which countries or other entities 
aim to achieve a low-carbon economy, or by which individuals aim to 
reduce their carbon consumption.

Decomposition approach: Decomposition methods disaggregate the 
total amount of historical changes of a policy variable into contribu-
tions made by its various determinants.

Deforestation: Conversion of forest to non-forest is one of the major 
sources of greenhouse gas (GHG) emissions. Under Article 3.3 of the 
Kyoto Protocol, “the net changes in greenhouse gas emissions by 
sources and removals by sinks resulting from direct human-induced 
land-use change and forestry activities, limited to afforestation, 
reforestation and deforestation since 1990, measured as verifiable 
changes in carbon stocks in each commitment period, shall be sued 
to meet the commitments under this Article of each Party included in 
Annex  I”. Reducing emissions from deforestation is not eligible for 
Joint Implementation (JI) or Clean Development Mechanism (CDM) 
projects but has been introduced in the program of work under REDD 
(Reducing Emissions from Deforestation and Forest Degradation) 
under the United Nations Framework Convention on Climate Change 
(UNFCCC). 

For a discussion of the term forest and related terms such as afforesta-
tion, reforestation, and deforestation see the IPCC Special Report on 
Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the 
report on Definitions and Methodological Options to Inventory Emis-
sions from Direct Human-induced Degradation of Forests and Deveg-
etation of Other Vegetation Types (IPCC, 2003).
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Dematerialization: The ambition to reduce the total material inputs 
required to deliver a final service.

Descriptive analysis: Descriptive (also termed positive) approaches to 
analysis focus on how the world works or actors behave, not how they 
should behave in some idealized world. See also Normative analysis.

Desertification: Land degradation in arid, semi-arid, and dry sub-
humid areas resulting from various factors, including climatic varia-
tions and human activities. Land degradation in arid, semi-arid, and 
dry sub-humid areas is a reduction or loss of the biological or eco-
nomic productivity and complexity of rainfed cropland, irrigated crop-
land, or range, pasture, forest, and woodlands resulting from land uses 
or from a process or combination of processes, including processes 
arising from human activities and habitation patterns, such as (1) soil 
erosion caused by wind and / or water; (2) deterioration of the physical, 
chemical, biological, or economic properties of soil; and (3) long-term 
loss of natural vegetation (UNCCD, 1994).

Designated national authority (DNA): A designated national 
authority is a national institution that authorizes and approves Clean 
Development Mechansim (CDM) projects in that country. In CDM host 
countries, the DNA assesses whether proposed projects assist the host 
country in achieving its sustainable development (SD) goals, certifica-
tion of which is a prerequisite for registration of the project by the 
CDM Executive Board. 

Developed / developing countries: See Industrialized / developing 
countries.

Development pathway: An evolution based on an array of techno-
logical, economic, social, institutional, cultural, and biophysical charac-
teristics that determine the interactions between human and natural 
systems, including consumption and production patterns in all coun-
tries, over time at a particular scale.

Direct Air Capture (DAC): Chemical process by which a pure carbon 
dioxide (CO2) stream is produced by capturing CO2 from the ambient 
air.

Direct emissions: See Emissions.

Discounting: A mathematical operation making monetary (or other) 
amounts received or expended at different times (years) comparable 
across time. The discounter uses a fixed or possibly time-varying dis-
count rate (> 0) from year to year that makes future value worth less 
today. See also Present value.

Double dividend: The extent to which revenue-generating instru-
ments, such as carbon taxes or auctioned (tradable) emission permits 
can (1) contribute to mitigation and (2) offset at least part of the 
potential welfare losses of climate policies through recycling the rev-
enue in the economy to reduce other taxes likely to cause distortions. 

Drivers of behaviour: Determinants of human decisions and actions, 
including peoples’ values and goals and the factors that constrain 
action, including economic factors and incentives, information access, 
regulatory and technological constraints, cognitive and emotional 
processing capacity, and social norms. See also Behaviour and Behav-
ioural change.

Drivers of emissions: Drivers of emissions refer to the processes, 
mechanisms and properties that influence emissions through factors. 
Factors comprise the terms in a decomposition of emissions. Factors 
and drivers may in return affect policies, measures and other drivers.

Economic efficiency: Economic efficiency refers to an economy’s allo-
cation of resources (goods, services, inputs, productive activities). An 
allocation is efficient if it is not possible to reallocate resources so as 
to make at least one person better off without making someone else 
worse off. An allocation is inefficient if such a reallocation is possible. 
This is also known as the Pareto Criterion for efficiency. See also Pareto 
optimum.

Economies in Transition (EITs): Countries with their economies 
changing from a planned economic system to a market economy. See 
Annex II.2.1.

Ecosystem: A functional unit consisting of living organisms, their non-
living environment, and the interactions within and between them. The 
components included in a given ecosystem and its spatial boundaries 
depend on the purpose for which the ecosystem is defined: in some 
cases they are relatively sharp, while in others they are diffuse. Ecosys-
tem boundaries can change over time. Ecosystems are nested within 
other ecosystems, and their scale can range from very small to the 
entire biosphere. In the current era, most ecosystems either contain 
people as key organisms, or are influenced by the effects of human 
activities in their environment.

Ecosystem services: Ecological processes or functions having mon-
etary or non-monetary value to individuals or society at large. These 
are frequently classified as (1) supporting services such as productiv-
ity or biodiversity maintenance, (2) provisioning services such as food, 
fiber, or fish, (3) regulating services such as climate regulation or car-
bon sequestration, and (4) cultural services such as tourism or spiritual 
and aesthetic appreciation.

Embodied emissions: See Emissions.

Embodied energy: See Energy.

Emission allowance: See Emission permit.

Emission factor / Emissions intensity: The emissions released per 
unit of activity. See also Carbon intensity.
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Emission permit: An entitlement allocated by a government to a 
legal entity (company or other emitter) to emit a specified amount of a 
substance. Emission permits are often used as part of emissions trad-
ing schemes. 

Emission quota: The portion of total allowable emissions assigned to 
a country or group of countries within a framework of maximum total 
emissions.

Emission scenario: A plausible representation of the future devel-
opment of emissions of substances that are potentially radiatively 
active (e. g., greenhouse gases, aerosols) based on a coherent and 
internally consistent set of assumptions about driving forces (such 
as demographic and socioeconomic development, technological 
change, energy and land use) and their key relationships. Concentra-
tion scenarios, derived from emission scenarios, are used as input to 
a climate model to compute climate projections. In IPCC (1992) a set 
of emission scenarios was presented which were used as a basis for 
the climate projections in IPCC (1996). These emission scenarios are 
referred to as the IS92 scenarios. In the IPCC Special Report on Emis-
sion Scenarios (Nakićenović and Swart, 2000) emission scenarios, 
the so-called SRES scenarios, were published, some of which were 
used, among others, as a basis for the climate projections presented 
in Chapters 9 to 11 of IPCC (2001) and Chapters 10 and 11 of IPCC 
(2007). New emission scenarios for climate change, the four Repre-
sentative Concentration Pathways (RCPs), were developed for, but 
independently of, the present IPCC assessment. See also Baseline / ref-
erence, Climate scenario, Mitigation scenario, Shared socio-economic 
pathways, Scenario, Socio-economic scenario, Stabilization, and 
Transformation pathway.

Emission trajectories: A projected development in time of the emis-
sion of a greenhouse gas (GHG) or group of GHGs, aerosols, and GHG 
precursors. 

Emissions: 

Agricultural emissions: Emissions associated with agricultural 
systems — predominantly methane (CH4) or nitrous oxide (N2O). 
These include emissions from enteric fermentation in domestic 
livestock, manure management, rice cultivation, prescribed burn-
ing of savannas and grassland, and from soils (IPCC, 2006). 

Anthropogenic emissions: Emissions of greenhouse gases 
(GHGs), aerosols, and precursors of a GHG or aerosol caused by 
human activities. These activities include the burning of fossil fuels, 
deforestation, land use changes (LUC), livestock production, fertil-
ization, waste management, and industrial processes.

Direct emissions: Emissions that physically arise from activities 
within well-defined boundaries of, for instance, a region, an eco-
nomic sector, a company, or a process.

Embodied emissions: Emissions that arise from the production 
and delivery of a good or service or the build-up of infrastructure. 
Depending on the chosen system boundaries, upstream emissions 
are often included (e. g., emissions resulting from the extraction of 
raw materials). See also Lifecycle assessment (LCA).

Indirect emissions: Emissions that are a consequence of the 
activities within well-defined boundaries of, for instance, a region, 
an economic sector, a company or process, but which occur outside 
the specified boundaries. For example, emissions are described as 
indirect if they relate to the use of heat but physically arise out-
side the boundaries of the heat user, or to electricity production 
but physically arise outside of the boundaries of the power supply 
sector.

Scope 1, Scope 2, and Scope 3 emissions: Emissions respon-
sibility as defined by the GHG Protocol, a private sector initiative. 
‘Scope 1’ indicates direct greenhouse gas (GHG) emissions that are 
from sources owned or controlled by the reporting entity. ‘Scope 
2’ indicates indirect GHG emissions associated with the produc-
tion of electricity, heat, or steam purchased by the reporting entity. 
‘Scope 3’ indicates all other indirect emissions, i. e., emissions asso-
ciated with the extraction and production of purchased materials, 
fuels, and services, including transport in vehicles not owned or 
controlled by the reporting entity, outsourced activities, waste dis-
posal, etc. (WBCSD and WRI, 2004).

Territorial emissions: Emissions that take place within the ter-
ritories of a particular jurisdiction.

Emissions Reduction Unit (ERU): Equal to one metric tonne of CO2-
equivalent emissions reduced or of carbon dioxide (CO2) removed from 
the atmosphere through a Joint Implementation (JI) (defined in Arti-
cle 6 of the Kyoto Protocol) project, calculated using Global Warming 
Potentials (GWPs). See also Certified Emission Reduction Unit (CER) 
and Emissions trading.

Emission standard: An emission level that, by law or by voluntary 
agreement, may not be exceeded. Many standards use emission fac-
tors in their prescription and therefore do not impose absolute limits 
on the emissions.

Emissions trading: A market-based instrument used to limit emis-
sions. The environmental objective or sum of total allowed emissions is 
expressed as an emissions cap. The cap is divided in tradable emission 
permits that are allocated — either by auctioning or handing out for 
free (grandfathering) — to entities within the jurisdiction of the trad-
ing scheme. Entities need to surrender emission permits equal to the 
amount of their emissions (e. g., tonnes of carbon dioxide). An entity 
may sell excess permits. Trading schemes may occur at the intra-com-
pany, domestic, or international level and may apply to carbon dioxide 
(CO2), other greenhouse gases (GHGs), or other substances. Emissions 
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trading is also one of the mechanisms under the Kyoto Protocol. See 
also Kyoto Mechanisms.

Energy: The power of ‘doing work’ possessed at any instant by a 
body or system of bodies. Energy is classified in a variety of types and 
becomes available to human ends when it flows from one place to 
another or is converted from one type into another. 

Embodied energy: The energy used to produce a material sub-
stance or product (such as processed metals or building materi-
als), taking into account energy used at the manufacturing facility, 
energy used in producing the materials that are used in the manu-
facturing facility, and so on.

Final energy: See Primary energy.

Primary energy: Primary energy (also referred to as energy 
sources) is the energy stored in natural resources (e. g., coal, crude 
oil, natural gas, uranium, and renewable sources). It is defined in 
several alternative ways. The International Energy Agency (IEA) 
utilizes the physical energy content method, which defines pri-
mary energy as energy that has not undergone any anthropogenic 
conversion. The method used in this report is the direct equiva-
lent method (see Annex II.4), which counts one unit of secondary 
energy provided from non-combustible sources as one unit of pri-
mary energy, but treats combustion energy as the energy poten-
tial contained in fuels prior to treatment or combustion. Primary 
energy is transformed into secondary energy by cleaning (natural 
gas), refining (crude oil to oil products) or by conversion into elec-
tricity or heat. When the secondary energy is delivered at the end-
use facilities it is called final energy (e. g., electricity at the wall 
outlet), where it becomes usable energy in supplying energy ser-
vices (e. g., light).

Renewable energy (RE): Any form of energy from solar, geophys-
ical, or biological sources that is replenished by natural processes 
at a rate that equals or exceeds its rate of use. For a more detailed 
description see Bioenergy, Solar energy, Hydropower, Ocean, Geo-
thermal, and Wind energy.

Secondary energy: See Primary energy.

Energy access: Access to clean, reliable and affordable energy ser-
vices for cooking and heating, lighting, communications, and produc-
tive uses (AGECC, 2010).

Energy carrier: A substance for delivering mechanical work or trans-
fer of heat. Examples of energy carriers include: solid, liquid, or gas-
eous fuels (e. g., biomass, coal, oil, natural gas, hydrogen); pressur-
ized / heated / cooled fluids (air, water, steam); and electric current.

Energy density: The ratio of stored energy to the volume or mass of 
a fuel or battery.

Energy efficiency (EE): The ratio of useful energy output of a system, 
conversion process, or activity to its energy input. In economics, the 
term may describe the ratio of economic output to energy input. See 
also Energy intensity.

Energy intensity: The ratio of energy use to economic or physical out-
put. 

Energy poverty: A lack of access to modern energy services. See also 
Energy access.

Energy security: The goal of a given country, or the global community 
as a whole, to maintain an adequate, stable, and predictable energy 
supply. Measures encompass safeguarding the sufficiency of energy 
resources to meet national energy demand at competitive and stable 
prices and the resilience of the energy supply; enabling development 
and deployment of technologies; building sufficient infrastructure to 
generate, store and transmit energy supplies; and ensuring enforceable 
contracts of delivery.

Energy services: An energy service is the benefit received as a result 
of energy use.

Energy system: The energy system comprises all components related 
to the production, conversion, delivery, and use of energy. 

Environmental effectiveness: A policy is environmentally effective 
to the extent by which it achieves its expected environmental target 
(e. g., greenhouse gas (GHG) emission reduction).

Environmental input-output analysis: An analytical method used 
to allocate environmental impacts arising in production to categories 
of final consumption, by means of the Leontief inverse of a country’s 
economic input-output tables. See also Annex II.6.2.

Environmental Kuznets Curve: The hypothesis that various environ-
mental impacts first increase and then eventually decrease as income 
per capita increases.

Evidence: Information indicating the degree to which a belief or prop-
osition is true or valid. In this report, the degree of evidence reflects 
the amount, quality, and consistency of scientific / technical information 
on which the Lead Authors are basing their findings. See also Agree-
ment, Confidence, Likelihood and Uncertainty.

Externality / external cost / external benefit: Externalities arise from 
a human activity when agents responsible for the activity do not take 
full account of the activity’s impacts on others’ production and con-
sumption possibilities, and no compensation exists for such impacts. 
When the impacts are negative, they are external costs. When the 
impacts are positive, they are external benefits. See also Social costs.
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Feed-in tariff (FIT): The price per unit of electricity (heat) that a utility 
or power (heat) supplier has to pay for distributed or renewable elec-
tricity (heat) fed into the power grid (heat supply system) by non-utility 
generators. A public authority regulates the tariff. 

Final energy: See Primary energy.

Flaring: Open air burning of waste gases and volatile liquids, through 
a chimney, at oil wells or rigs, in refineries or chemical plants, and at 
landfills. 

Flexibility Mechanisms: See Kyoto Mechanisms.

Food security: A state that prevails when people have secure access 
to sufficient amounts of safe and nutritious food for normal growth, 
development, and an active and healthy life.4 

Forest: A vegetation type dominated by trees. Many definitions of the 
term forest are in use throughout the world, reflecting wide differences 
in biogeophysical conditions, social structure and economics. According 
to the 2005 United Nations Framework Convention on Climate Change 
(UNFCCC) definition a forest is an area of land of at least 0.05 – 1 hect-
are, of which more than 10 – 30 % is covered by tree canopy. Trees must 
have a potential to reach a minimum of 25 meters at maturity in situ. 
Parties to the Convention can choose to define a forest from within 
those ranges. Currently, the definition does not recognize different 
biomes, nor do they distinguish natural forests from plantations, an 
anomaly being pointed out by many as in need of rectification. 

For a discussion of the term forest and related terms such as afforesta-
tion, reforestation and deforestation see the IPCC Report on Land Use, 
Land-Use Change and Forestry (IPCC, 2000). See also the Report on 
Definitions and Methodological Options to Inventory Emissions from 
Direct Human-induced Degradation of Forests and Devegetation of 
Other Vegetation Types (IPCC, 2003).

Forest management: A system of practices for stewardship and use 
of forest land aimed at fulfilling relevant ecological (including biologi-
cal diversity), economic and social functions of the forest in a sustain-
able manner (UNFCCC, 2002).

Forestry and Other Land Use (FOLU): See Agriculture, Forestry and 
Other Land Use (AFOLU).

Fossil fuels: Carbon-based fuels from fossil hydrocarbon deposits, 
including coal, peat, oil, and natural gas.

Free Rider: One who benefits from a common good without contrib-
uting to its creation or preservation.

4	 This glossary entry builds on definitions used in FAO (2000) and previous IPCC 
reports.

Fuel cell: A fuel cell generates electricity in a direct and continu-
ous way from the controlled electrochemical reaction of hydrogen or 
another fuel and oxygen. With hydrogen as fuel the cell emits only 
water and heat (no carbon dioxide) and the heat can be utilized (see 
also Cogeneration).

Fuel poverty: A condition in which a household is unable to guaran-
tee a certain level of consumption of domestic energy services (espe-
cially heating) or suffers disproportionate expenditure burdens to meet 
these needs.

Fuel switching: In general, fuel switching refers to substituting fuel A 
for fuel B. In the context of mitigation it is implicit that fuel A has lower 
carbon content than fuel B, e. g., switching from natural gas to coal.

General circulation (climate) model (GCM): See Climate model.

General equilibrium analysis: General equilibrium analysis consid-
ers simultaneously all the markets and feedback effects among these 
markets in an economy leading to market clearance. (Computable) 
general equilibrium (CGE) models are the operational tools used to 
perform this type of analysis.

Geoengineering: Geoengineering refers to a broad set of methods 
and technologies that aim to deliberately alter the climate system 
in order to alleviate the impacts of climate change. Most, but not 
all, methods seek to either (1) reduce the amount of absorbed solar 
energy in the climate system (Solar Radiation Management) or (2) 
increase net carbon sinks from the atmosphere at a scale sufficiently 
large to alter climate (Carbon Dioxide Removal). Scale and intent 
are of central importance. Two key characteristics of geoengineer-
ing methods of particular concern are that they use or affect the cli-
mate system (e. g., atmosphere, land or ocean) globally or regionally 
and / or could have substantive unintended effects that cross national 
boundaries. Geoengineering is different from weather modification 
and ecological engineering, but the boundary can be fuzzy (IPCC, 
2012, p. 2).

Geothermal energy: Accessible thermal energy stored in the earth’s 
interior.

Global Environment Facility (GEF): The Global Environment Facil-
ity, established in 1991, helps developing countries fund projects and 
programmes that protect the global environment. GEF grants support 
projects related to biodiversity, climate change, international waters, 
land degradation, the ozone (O3) layer, and persistent organic pollut-
ants.

Global mean surface temperature: An estimate of the global mean 
surface air temperature. However, for changes over time, only anoma-
lies, as departures from a climatology, are used, most commonly based 
on the area-weighted global average of the sea surface temperature 
anomaly and land surface air temperature anomaly. 
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Global warming: Global warming refers to the gradual increase, 
observed or projected, in global surface temperature, as one of the 
consequences of radiative forcing caused by anthropogenic emissions.

Global Warming Potential (GWP): An index, based on radiative 
properties of greenhouse gases (GHGs), measuring the radiative forc-
ing following a pulse emission of a unit mass of a given GHG in the 
present-day atmosphere integrated over a chosen time horizon, rela-
tive to that of carbon dioxide (CO2). The GWP represents the combined 
effect of the differing times these gases remain in the atmosphere and 
their relative effectiveness in causing radiative forcing. The Kyoto Pro-
tocol is based on GWPs from pulse emissions over a 100-year time 
frame. Unless stated otherwise, this report uses GWP values calculated 
with a 100-year time horizon which are often derived from the IPCC 
Second Assessment Report (see Annex II.9.1 for the GWP values of the 
different GHGs).

Governance: A comprehensive and inclusive concept of the full range 
of means for deciding, managing, and implementing policies and mea-
sures. Whereas government is defined strictly in terms of the nation-
state, the more inclusive concept of governance recognizes the contri-
butions of various levels of government (global, international, regional, 
local) and the contributing roles of the private sector, of nongovern-
mental actors, and of civil society to addressing the many types of 
issues facing the global community.

Grazing land management: The system of practices on land used for 
livestock production aimed at manipulating the amount and type of 
vegetation and livestock produced (UNFCCC, 2002).

Green Climate Fund (GCF): The Green Climate Fund was established 
by the 16th Session of the Conference of the Parties (COP) in 2010 as 
an operating entity of the financial mechanism of the United Nations 
Framework Convention on Climate Change (UNFCCC), in accordance 
with Article 11 of the Convention, to support projects, programmes 
and policies and other activities in developing country Parties. The 
Fund is governed by a Board and will receive guidance of the COP. The 
Fund is headquartered in Songdo, Republic of Korea.

Greenhouse effect: The infrared radiative effect of all infrared-
absorbing constituents in the atmosphere. Greenhouse gases (GHGs), 
clouds, and (to a small extent) aerosols absorb terrestrial radiation 
emitted by the earth’s surface and elsewhere in the atmosphere. These 
substances emit infrared radiation in all directions, but, everything else 
being equal, the net amount emitted to space is normally less than 
would have been emitted in the absence of these absorbers because 
of the decline of temperature with altitude in the troposphere and the 
consequent weakening of emission. An increase in the concentration 
of GHGs increases the magnitude of this effect; the difference is some-
times called the enhanced greenhouse effect. The change in a GHG 
concentration because of anthropogenic emissions contributes to an 
instantaneous radiative forcing. Surface temperature and troposphere 

warm in response to this forcing, gradually restoring the radiative bal-
ance at the top of the atmosphere.

Greenhouse gas (GHG): Greenhouse gases are those gaseous con-
stituents of the atmosphere, both natural and anthropogenic, that 
absorb and emit radiation at specific wavelengths within the spectrum 
of terrestrial radiation emitted by the earth’s surface, the atmosphere 
itself, and by clouds. This property causes the greenhouse effect. Water 
vapour (H2O), carbon dioxide (CO2), nitrous oxide (N2O), methane 
(CH4) and ozone (O3) are the primary GHGs in the earth’s atmosphere. 
Moreover, there are a number of entirely human-made GHGs in the 
atmosphere, such as the halocarbons and other chlorine- and bromine-
containing substances, dealt with under the Montreal Protocol. Beside 
CO2, N2O and CH4, the Kyoto Protocol deals with the GHGs sulphur 
hexafluoride (SF6), hydrofluorocarbons (HFCs) and perfluorocarbons 
(PFCs). For a list of well-mixed GHGs, see WGI AR5 Table 2.A.1.

Gross domestic product (GDP): The sum of gross value added, at 
purchasers’ prices, by all resident and non-resident producers in the 
economy, plus any taxes and minus any subsidies not included in the 
value of the products in a country or a geographic region for a given 
period, normally one year. GDP is calculated without deducting for 
depreciation of fabricated assets or depletion and degradation of natu-
ral resources.

Gross national expenditure (GNE): The total amount of public and 
private consumption and capital expenditures of a nation. In general, 
national account is balanced such that gross domestic product (GDP) + 
import = GNE + export.

Gross national product: The value added from domestic and foreign 
sources claimed by residents. GNP comprises gross domestic product 
(GDP) plus net receipts of primary income from non-resident income.

Gross world product: An aggregation of the individual country’s 
gross domestic products (GDP) to obtain the world or global GDP.

Heat island: The relative warmth of a city compared with surrounding 
rural areas, associated with changes in runoff, effects on heat reten-
tion, and changes in surface albedo.

Human Development Index (HDI): The Human Development Index 
allows the assessment of countries’ progress regarding social and eco-
nomic development as a composite index of three indicators: (1) health 
measured by life expectancy at birth; (2) knowledge as measured by 
a combination of the adult literacy rate and the combined primary, 
secondary and tertiary school enrolment ratio; and (3) standard of liv-
ing as gross domestic product (GDP) per capita (in purchasing power 
parity). The HDI sets a minimum and a maximum for each dimension, 
called goalposts, and then shows where each country stands in rela-
tion to these goalposts, expressed as a value between 0 and 1. The 
HDI only acts as a broad proxy for some of the key issues of human 
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development; for instance, it does not reflect issues such as political 
participation or gender inequalities.

Hybrid vehicle: Any vehicle that employs two sources of propulsion, 
particularly a vehicle that combines an internal combustion engine 
with an electric motor.

Hydrofluorocarbons (HFCs): One of the six types of greenhouse 
gases (GHGs) or groups of GHGs to be mitigated under the Kyoto Pro-
tocol. They are produced commercially as a substitute for chlorofluo-
rocarbons (CFCs). HFCs largely are used in refrigeration and semicon-
ductor manufacturing. See also Global Warming Potential (GWP) and 
Annex II.9.1 for GWP values.

Hydropower: Power harnessed from the flow of water.

Incremental costs: See Climate finance.

Incremental investment: See Climate finance.

Indigenous peoples: Indigenous peoples and nations are those that, 
having a historical continuity with pre-invasion and pre-colonial soci-
eties that developed on their territories, consider themselves distinct 
from other sectors of the societies now prevailing on those territories, 
or parts of them. They form at present principally non-dominant sectors 
of society and are often determined to preserve, develop, and transmit 
to future generations their ancestral territories, and their ethnic iden-
tity, as the basis of their continued existence as peoples, in accordance 
with their own cultural patterns, social institutions, and common law 
system.5

Indirect emissions: See Emissions.

Indirect land use change (iLUC): See Land use.

Industrial Revolution: A period of rapid industrial growth with far-
reaching social and economic consequences, beginning in Britain dur-
ing the second half of the 18th century and spreading to Europe and 
later to other countries including the United States. The invention of 
the steam engine was an important trigger of this development. The 
industrial revolution marks the beginning of a strong increase in the 
use of fossil fuels and emission of, in particular, fossil carbon dioxide. 
In this report the terms pre-industrial and industrial refer, somewhat 
arbitrarily, to the periods before and after 1750, respectively.

Industrialized countries / developing countries: There are a diver-
sity of approaches for categorizing countries on the basis of their level 
of development, and for defining terms such as industrialized, devel-
oped, or developing. Several categorizations are used in this report. (1) 

5	 This glossary entry builds on the definitions used in Cobo (1987) and previous 
IPCC reports.

In the United Nations system, there is no established convention for 
designating of developed and developing countries or areas. (2) The 
United Nations Statistics Division specifies developed and developing 
regions based on common practice. In addition, specific countries are 
designated as Least Developed Countries (LCD), landlocked develop-
ing countries, small island developing states, and transition economies. 
Many countries appear in more than one of these categories. (3) The 
World Bank uses income as the main criterion for classifying countries 
as low, lower middle, upper middle, and high income. (4) The UNDP 
aggregates indicators for life expectancy, educational attainment, and 
income into a single composite Human Development Index (HDI) to 
classify countries as low, medium, high, or very high human develop-
ment. See WGII AR5 Box 1 – 2.

Input-output analysis: See Environmental input-output analysis.

Institution: Institutions are rules and norms held in common by social 
actors that guide, constrain and shape human interaction. Institu-
tions can be formal, such as laws and policies, or informal, such as 
norms and conventions. Organizations — such as parliaments, regula-
tory agencies, private firms, and community bodies — develop and act 
in response to institutional frameworks and the incentives they frame. 
Institutions can guide, constrain and shape human interaction through 
direct control, through incentives, and through processes of socializa-
tion.

Institutional feasibility: Institutional feasibility has two key parts: (1) 
the extent of administrative workload, both for public authorities and 
for regulated entities, and (2) the extent to which the policy is viewed 
as legitimate, gains acceptance, is adopted, and is implemented.

Integrated assessment: A method of analysis that combines results 
and models from the physical, biological, economic, and social sciences, 
and the interactions among these components in a consistent frame-
work to evaluate the status and the consequences of environmental 
change and the policy responses to it. See also Integrated Models.

Integrated models: See Models.

IPAT identity: IPAT is the lettering of a formula put forward to describe 
the impact of human activity on the environment. Impact (I) is viewed 
as the product of population size (P), affluence (A=GDP / person) and 
technology (T= impact per GDP unit). In this conceptualization, popu-
lation growth by definition leads to greater environmental impact if A 
and T are constant, and likewise higher income leads to more impact 
(Ehrlich and Holdren, 1971).

Iron fertilization: Deliberate introduction of iron to the upper ocean 
intended to enhance biological productivity which can sequester addi-
tional atmospheric carbon dioxide (CO2) into the oceans. See also Geo-
engineering and Carbon Dioxide Removal (CDR).

Jevon’s paradox: See Rebound effect.
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Joint Implementation (JI): A mechanism defined in Article 6 of the 
Kyoto Protocol, through which investors (governments or companies) 
from developed (Annex B) countries may implement projects jointly 
that limit or reduce emissions or enhance sinks, and to share the Emis-
sions Reduction Units (ERU). See also Kyoto Mechanisms.

Kaya identity: In this identity global emissions are equal to the popu-
lation size, multiplied by per capita output (gross world product), mul-
tiplied by the energy intensity of production, multiplied by the carbon 
intensity of energy.

Kyoto Mechanisms (also referred to as Flexibility Mechanisms): 
Market-based mechanisms that Parties to the Kyoto Protocol can use in 
an attempt to lessen the potential economic impacts of their commit-
ment to limit or reduce greenhouse gas (GHG) emissions. They include 
Joint Implementation (JI) (Article 6), Clean Development Mechanism 
(CDM) (Article 12), and Emissions trading (Article 17).

Kyoto Protocol: The Kyoto Protocol to the United Nations Framework 
Convention on Climate Change (UNFCCC) was adopted in 1997 in 
Kyoto, Japan, at the Third Session of the Conference of the Parties (COP) 
to the UNFCCC. It contains legally binding commitments, in addition to 
those included in the UNFCCC. Countries included in Annex B of the 
Protocol (most Organisation for Economic Cooperation and Develop-
ment countries and countries with economies in transition) agreed to 
reduce their anthropogenic greenhouse gas (GHG) emissions (carbon 
dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons 
(HFCs), perfluorocarbons (PFCs), and sulphur hexafluoride (SF6)) by at 
least 5 % below 1990 levels in the commitment period 2008 – 2012. 
The Kyoto Protocol entered into force on 16 February 2005.

Land use (change, direct and indirect): Land use refers to the total 
of arrangements, activities and inputs undertaken in a certain land 
cover type (a set of human actions). The term land use is also used 
in the sense of the social and economic purposes for which land is 
managed (e. g., grazing, timber extraction and conservation). In urban 
settlements it is related to land uses within cities and their hinterlands. 
Urban land use has implications on city management, structure, and 
form and thus on energy demand, greenhouse gas (GHG) emissions, 
and mobility, among other aspects.

Land use change (LUC): Land use change refers to a change in 
the use or management of land by humans, which may lead to a 
change in land cover. Land cover and LUC may have an impact on 
the surface albedo, evapotranspiration, sources and sinks of GHGs, 
or other properties of the climate system and may thus give rise to 
radiative forcing and / or other impacts on climate, locally or glob-
ally. See also the IPCC Report on Land Use, Land-Use Change, and 
Forestry (IPCC, 2000).

Indirect land use change (iLUC): Indirect land use change refers 
to shifts in land use induced by a change in the production level of 
an agricultural product elsewhere, often mediated by markets or 

driven by policies. For example, if agricultural land is diverted to 
fuel production, forest clearance may occur elsewhere to replace 
the former agricultural production. See also Afforestation, Defores-
tation and Reforestation.

Land use, land use change and forestry (LULUCF): A greenhouse 
gas (GHG) inventory sector that covers emissions and removals of 
GHGs resulting from direct human-induced land use, land use change 
and forestry activities excluding agricultural emissions. See also Agri-
culture, Forestry and Other Land Use (AFOLU).

Land value capture: A financing mechanism usually based around 
transit systems, or other infrastructure and services, that captures the 
increased value of land due to improved accessibility.

Leakage: Phenomena whereby the reduction in emissions (relative to 
a baseline) in a jurisdiction / sector associated with the implementation 
of mitigation policy is offset to some degree by an increase outside 
the jurisdiction / sector through induced changes in consumption, pro-
duction, prices, land use and / or trade across the jurisdictions / sectors. 
Leakage can occur at a number of levels, be it a project, state, province, 
nation, or world region. See also Rebound effect. 

In the context of Carbon Dioxide Capture and Storage (CCS), ‘CO2 leak-
age’ refers to the escape of injected carbon dioxide (CO2) from the 
storage location and eventual release to the atmosphere. In the con-
text of other substances, the term is used more generically, such as 
for ‘methane (CH4) leakage’ (e. g., from fossil fuel extraction activities), 
and ‘hydrofluorocarbon (HFC) leakage’ (e. g., from refrigeration and 
air-conditioning systems).

Learning curve / rate: Decreasing cost-prices of technologies shown 
as a function of increasing (total or yearly) supplies. The learning rate is 
the percent decrease of the cost-price for every doubling of the cumu-
lative supplies (also called progress ratio).

Least Developed Countries (LDCs): A list of countries designated 
by the Economic and Social Council of the United Nations (ECOSOC) 
as meeting three criteria: (1) a low income criterion below a certain 
threshold of gross national income per capita of between USD 750 
and USD 900, (2) a human resource weakness based on indicators 
of health, education, adult literacy, and (3) an economic vulnerability 
weakness based on indicators on instability of agricultural production, 
instability of export of goods and services, economic importance of 
non-traditional activities, merchandise export concentration, and the 
handicap of economic smallness. Countries in this category are eligible 
for a number of programmes focused on assisting countries most in 
need. These privileges include certain benefits under the articles of the 
United Nations Framework Convention on Climate Change (UNFCCC). 
See also Industrialized / developing countries. 

Levelized cost of conserved carbon (LCCC): See Annex II.3.1.3 for 
concepts and definition.
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Levelized cost of conserved energy (LCCE): See Annex II.3.1.2 for 
concepts and definition.

Levelized cost of energy (LCOE): See Annex II.3.1.1 for concepts 
and definition.

Lifecycle assessment (LCA): A widely used technique defined by ISO 
14040 as a “compilation and evaluation of the inputs, outputs and the 
potential environmental impacts of a product system throughout its 
life cycle”. The results of LCA studies are strongly dependent on the 
system boundaries within which they are conducted. The technique is 
intended for relative comparison of two similar means to complete a 
product. See also Annex II.6.3.

Likelihood: The chance of a specific outcome occurring, where this 
might be estimated probabilistically. This is expressed in this report 
using a standard terminology (Mastrandrea et al., 2010): virtually cer-
tain 99 – 100 % probability, very likely 90 – 100 %, likely 66 – 100 %, 
about as likely as not 33 – 66 %, unlikely 0 – 33 %, very unlikely 0 – 10 
%, exceptionally unlikely 0 – 1 %. Additional terms (more likely than 
not > 50 – 100 %, and more unlikely than likely 0 – < 50 %) may also be 
used when appropriate. Assessed likelihood is typeset in italics, e. g., 
very likely. See also Agreement, Confidence, Evidence and Uncertainty.

Lock-in: Lock-in occurs when a market is stuck with a standard even 
though participants would be better off with an alternative.

Marginal abatement cost (MAC): The cost of one unit of additional 
mitigation.

Market barriers: In the context of climate change mitigation, market 
barriers are conditions that prevent or impede the diffusion of cost-
effective technologies or practices that would mitigate greenhouse gas 
(GHG) emissions.

Market-based mechanisms, GHG emissions: Regulatory approaches 
using price mechanisms (e. g., taxes and auctioned emission permits), 
among other instruments, to reduce the sources or enhance the sinks 
of greenhouse gases (GHGs).

Market exchange rate (MER): The rate at which foreign currencies 
are exchanged. Most economies post such rates daily and they vary 
little across all the exchanges. For some developing economies, offi-
cial rates and black-market rates may differ significantly and the MER 
is difficult to pin down. See also Purchasing power parity (PPP) and 
Annex II.1.3 for the monetary conversion process applied throughout 
this report.

Market failure: When private decisions are based on market prices 
that do not reflect the real scarcity of goods and services but rather 
reflect market distortions, they do not generate an efficient allocation 
of resources but cause welfare losses. A market distortion is any event 

in which a market reaches a market clearing price that is substantially 
different from the price that a market would achieve while operating 
under conditions of perfect competition and state enforcement of legal 
contracts and the ownership of private property. Examples of factors 
causing market prices to deviate from real economic scarcity are envi-
ronmental externalities, public goods, monopoly power, information 
asymmetry, transaction costs, and non-rational behaviour. See also 
Economic efficiency.

Material flow analysis (MFA): A systematic assessment of the flows 
and stocks of materials within a system defined in space and time 
(Brunner and Rechberger, 2004). See also Annex II.6.1.

Measures: In climate policy, measures are technologies, processes or 
practices that contribute to mitigation, for example renewable energy 
(RE) technologies, waste minimization processes, public transport com-
muting practices. 

Meeting of the Parties (CMP): The Conference of the Parties (COP) 
to the United Nations Framework Convention on Climate Change  
(UNFCCC) serves as the CMP, the supreme body of the Kyoto Protocol, 
since the latter entered into force on 16 February 2005. Only Parties 
to the Kyoto Protocol may participate in deliberations and make deci-
sions.

Methane (CH4): One of the six greenhouse gases (GHGs) to be miti-
gated under the Kyoto Protocol and is the major component of natural 
gas and associated with all hydrocarbon fuels. Significant emissions 
occur as a result of animal husbandry and agriculture and their man-
agement represents a major mitigation option. See also Global Warm-
ing Potential (GWP) and Annex II.9.1 for GWP values.

Methane recovery: Any process by which methane (CH4) emissions 
(e. g., from oil or gas wells, coal beds, peat bogs, gas transmission pipe-
lines, landfills, or anaerobic digesters) are captured and used as a fuel 
or for some other economic purpose (e. g., chemical feedstock).

Millennium Development Goals (MDGs): A set of eight time-bound 
and measurable goals for combating poverty, hunger, disease, illit-
eracy, discrimination against women and environmental degradation. 
These goals were agreed to at the UN Millennium Summit in 2000 
together with an action plan to reach the goals.

Mitigation (of climate change): A human intervention to reduce the 
sources or enhance the sinks of greenhouse gases (GHGs). This report 
also assesses human interventions to reduce the sources of other 
substances which may contribute directly or indirectly to limiting cli-
mate change, including, for example, the reduction of particulate mat-
ter (PM) emissions that can directly alter the radiation balance (e. g., 
black carbon) or measures that control emissions of carbon monoxide, 
nitrogen oxides (NOx), Volatile Organic Compounds (VOCs) and other 
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pollutants that can alter the concentration of tropospheric ozone (O3) 
which has an indirect effect on the climate.

Mitigation capacity: A country’s ability to reduce anthropogenic 
greenhouse gas (GHG) emissions or to enhance natural sinks, where 
ability refers to skills, competencies, fitness, and proficiencies that a 
country has attained and depends on technology, institutions, wealth, 
equity, infrastructure, and information. Mitigative capacity is rooted in 
a country’s sustainable development (SD) path.

Mitigation scenario: A plausible description of the future that 
describes how the (studied) system responds to the implementation 
of mitigation policies and measures. See also Baseline / reference, 
Climate scenario, Emission scenario, Representative Concentration 
Pathways (RCPs), Scenario, Shared socio-economic pathways, Socio-
economic scenarios, SRES scenarios, Stabilization, and Transformation 
pathways.

Models: Structured imitations of a system’s attributes and mecha-
nisms to mimic appearance or functioning of systems, for example, the 
climate, the economy of a country, or a crop. Mathematical models 
assemble (many) variables and relations (often in a computer code) to 
simulate system functioning and performance for variations in param-
eters and inputs.

Computable General Equilibrium (CGE) Model: A class of 
economic models that use actual economic data (i. e., input / out-
put data), simplify the characterization of economic behaviour, 
and solve the whole system numerically. CGE models specify all 
economic relationships in mathematical terms and predict the 
changes in variables such as prices, output and economic welfare 
resulting from a change in economic policies, given information 
about technologies and consumer preferences (Hertel, 1997). See 
also General equilibrium analysis.

Integrated Model: Integrated models explore the interactions 
between multiple sectors of the economy or components of par-
ticular systems, such as the energy system. In the context of trans-
formation pathways, they refer to models that, at a minimum, 
include full and disaggregated representations of the energy 
system and its linkage to the overall economy that will allow for 
consideration of interactions among different elements of that 
system. Integrated models may also include representations of the 
full economy, land use and land use change (LUC), and the climate 
system. See also Integrated assessment.

Sectoral Model: In the context of this report, sectoral models 
address only one of the core sectors that are discussed in this 
report, such as buildings, industry, transport, energy supply, and 
Agriculture, Forestry and Other Land Use (AFOLU).

Montreal Protocol: The Montreal Protocol on Substances that 
Deplete the Ozone Layer was adopted in Montreal in 1987, and subse-

quently adjusted and amended in London (1990), Copenhagen (1992), 
Vienna (1995), Montreal (1997) and Beijing (1999). It controls the con-
sumption and production of chlorine- and bromine- containing chemi-
cals that destroy stratospheric ozone (O3), such as chlorofluorocarbons 
(CFCs), methyl chloroform, carbon tetrachloride and many others.

Multi-criteria analysis (MCA): Integrates different decision param-
eters and values without assigning monetary values to all parameters. 
Multi-criteria analysis can combine quantitative and qualitative infor-
mation. Also referred to as multi-attribute analysis.

Multi-attribute analysis: See Multi-criteria analysis (MCA).

Multi-gas: Next to carbon dioxide (CO2), there are other forcing com-
ponents taken into account in, e. g., achieving reduction for a basket of 
greenhouse gas (GHG) emissions (CO2, methane (CH4), nitrous oxide 
(N2O), and fluorinated gases) or stabilization of CO2-equivalent con-
centrations (multi-gas stabilization, including GHGs and aerosols).

Nationally Appropriate Mitigation Action (NAMA): Nationally 
Appropriate Mitigation Actions are a concept for recognizing and 
financing emission reductions by developing countries in a post-2012 
climate regime achieved through action considered appropriate in a 
given national context. The concept was first introduced in the Bali 
Action Plan in 2007 and is contained in the Cancún Agreements.

Nitrogen oxides (NOX): Any of several oxides of nitrogen.

Nitrous oxide (N2O): One of the six greenhouse gases (GHGs) to be 
mitigated under the Kyoto Protocol. The main anthropogenic source 
of N2O is agriculture (soil and animal manure management), but 
important contributions also come from sewage treatment, fossil fuel 
combustion, and chemical industrial processes. N2O is also produced 
naturally from a wide variety of biological sources in soil and water, 
particularly microbial action in wet tropical forests. See also Global 
Warming Potential (GWP) and Annex II.9.1 for GWP values.

Non-Annex I Parties / countries: Non-Annex I Parties are mostly 
developing countries. Certain groups of developing countries are 
recognized by the Convention as being especially vulnerable to the 
adverse impacts of climate change, including countries with low-lying 
coastal areas and those prone to desertification and drought. Others, 
such as countries that rely heavily on income from fossil fuel produc-
tion and commerce, feel more vulnerable to the potential economic 
impacts of climate change response measures. The Convention empha-
sizes activities that promise to answer the special needs and concerns 
of these vulnerable countries, such as investment, insurance, and tech-
nology transfer. See also Annex I Parties / countries.

Normative analysis: Analysis in which judgments about the desirabil-
ity of various policies are made. The conclusions rest on value judg-
ments as well as on facts and theories. See also Descriptive analysis.
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Ocean energy: Energy obtained from the ocean via waves, tidal 
ranges, tidal and ocean currents, and thermal and saline gradients.

Offset (in climate policy): A unit of CO2-equivalent emissions that is 
reduced, avoided, or sequestered to compensate for emissions occur-
ring elsewhere.

Oil sands and oil shale: Unconsolidated porous sands, sandstone 
rock, and shales containing bituminous material that can be mined 
and converted to a liquid fuel. See also Unconventional fuels.

Overshoot pathways: Emissions, concentration, or temperature 
pathways in which the metric of interest temporarily exceeds, or ‘over-
shoots’, the long-term goal.

Ozone (O3): Ozone, the triatomic form of oxygen (O3), is a gaseous 
atmospheric constituent. In the troposphere, it is created both naturally 
and by photochemical reactions involving gases resulting from human 
activities (smog). Tropospheric O3 acts as a greenhouse gas (GHG). In 
the stratosphere, it is created by the interaction between solar ultra-
violet radiation and molecular oxygen (O2). Stratospheric O3 plays a 
dominant role in the stratospheric radiative balance. Its concentration 
is highest in the O3 layer.

Paratransit: Denotes flexible passenger transportation, often but not 
only in areas with low population density, that does not follow fixed 
routes or schedules. Options include minibuses (matatus, marshrutka), 
shared taxis and jitneys. Sometimes paratransit is also called commu-
nity transit.

Pareto optimum: A state in which no one’s welfare can be increased 
without reducing someone else’s welfare. See also Economic efficiency.

Particulate matter (PM): Very small solid particles emitted during 
the combustion of biomass and fossil fuels. PM may consist of a wide 
variety of substances. Of greatest concern for health are particulates of 
diameter less than or equal to 10 nanometers, usually designated as 
PM10. See also Aerosol.

Passive design: The word ‘passive’ in this context implies the ideal 
target that the only energy required to use the designed product or 
service comes from renewable sources. 

Path dependence: The generic situation where decisions, events, or 
outcomes at one point in time constrain adaptation, mitigation, or 
other actions or options at a later point in time.

Payback period: Mostly used in investment appraisal as financial 
payback, which is the time needed to repay the initial investment by 
the returns of a project. A payback gap exists when, for example, pri-
vate investors and micro-financing schemes require higher profitability 
rates from renewable energy (RE) projects than from fossil-fired proj-

ects. Energy payback is the time an energy project needs to deliver as 
much energy as had been used for setting the project online. Carbon 
payback is the time a renewable energy (RE) project needs to deliver 
as much net greenhouse gas (GHG) savings (with respect to the fossil 
reference energy system) as its realization has caused GHG emissions 
from a perspective of lifecycle assessment (LCA) (including land use 
changes (LUC) and loss of terrestrial carbon stocks).

Perfluorocarbons (PFCs): One of the six types of greenhouse gases 
(GHGs) or groups of GHGs to be mitigated under the Kyoto Protocol. 
PFCs are by-products of aluminium smelting and uranium enrichment. 
They also replace chlorofluorocarbons (CFCs) in manufacturing semi-
conductors. See also Global Warming Potential (GWP) and Annex II.9.1 
for GWP values.

Photovoltaic cells (PV): Electronic devices that generate electricity 
from light energy. See also Solar energy.

Policies (for mitigation of or adaptation to climate change): Poli-
cies are a course of action taken and / or mandated by a government, 
e. g., to enhance mitigation and adaptation. Examples of policies aimed 
at mitigation are support mechanisms for renewable energy (RE) sup-
plies, carbon or energy taxes, fuel efficiency standards for automobiles. 
See also Measures.

Polluter pays principle (PPP): The party causing the pollution is 
responsible for paying for remediation or for compensating the damage.

Positive analysis: See Descriptive analysis.

Potential: The possibility of something happening, or of someone 
doing something in the future. Different metrics are used throughout 
this report for the quantification of different types of potentials, includ-
ing the following:

Technical potential: Technical potential is the amount by which 
it is possible to pursue a specific objective through an increase in 
deployment of technologies or implementation of processes and 
practices that were not previously used or implemented. Quanti-
fication of technical potentials may take into account other than 
technical considerations, including social, economic and / or envi-
ronmental considerations.

Precautionary principle: A provision under Article 3 of the United 
Nations Framework Convention on Climate Change (UNFCCC), stipu-
lating that the Parties should take precautionary measures to antici-
pate, prevent, or minimize the causes of climate change and mitigate 
its adverse effects. Where there are threats of serious or irreversible 
damage, lack of full scientific certainty should not be used as a reason 
to postpone such measures, taking into account that policies and mea-
sures to deal with climate change should be cost-effective in order to 
ensure global benefits at the lowest possible cost.
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Precursors: Atmospheric compounds that are not greenhouse gases 
(GHGs) or aerosols, but that have an effect on GHG or aerosol con-
centrations by taking part in physical or chemical processes regulating 
their production or destruction rates.

Pre-industrial: See Industrial Revolution.

Present value: Amounts of money available at different dates in the 
future are discounted back to a present value, and summed to get the 
present value of a series of future cash flows. See also Discounting.

Primary production: All forms of production accomplished by plants, 
also called primary producers.

Primary energy: See Energy.

Private costs: Private costs are carried by individuals, companies or 
other private entities that undertake an action, whereas social costs 
include additionally the external costs on the environment and on soci-
ety as a whole. Quantitative estimates of both private and social costs 
may be incomplete, because of difficulties in measuring all relevant 
effects.

Production-based accounting: Production-based accounting pro-
vides a measure of emissions released to the atmosphere for the pro-
duction of goods and services by a certain entity (e. g., person, firm, 
country, or region). See also Consumption-based accounting.

Public good: Public goods are non-rivalrous (goods whose consump-
tion by one consumer does not prevent simultaneous consumption by 
other consumers) and non-excludable (goods for which it is not pos-
sible to prevent people who have not paid for it from having access 
to it). 

Purchasing power parity (PPP): The purchasing power of a currency 
is expressed using a basket of goods and services that can be bought 
with a given amount in the home country. International comparison 
of, for example, gross domestic products (GDP) of countries can be 
based on the purchasing power of currencies rather than on current 
exchange rates. PPP estimates tend to lower per capita GDP in indus-
trialized countries and raise per capita GDP in developing countries. 
(PPP is also an acronym for polluter pays principle). See also Market 
exchange rate (MER) and Annex II.1.3 for the monetary conversion 
process applied throughout this report.

Radiation management: See Solar Radiation Management.

Radiative forcing: Radiative forcing is the change in the net, down-
ward minus upward, radiative flux (expressed in W m – 2) at the tropo-
pause or top of atmosphere due to a change in an external driver of 
climate change, such as, for example, a change in the concentration of 
carbon dioxide (CO2) or the output of the sun. For the purposes of this 

report, radiative forcing is further defined as the change relative to the 
year 1750 and refers to a global and annual average value.

Rebound effect: Phenomena whereby the reduction in energy con-
sumption or emissions (relative to a baseline) associated with the 
implementation of mitigation measures in a jurisdiction is offset to 
some degree through induced changes in consumption, production, 
and prices within the same jurisdiction. The rebound effect is most typ-
ically ascribed to technological energy efficiency (EE) improvements. 
See also Leakage.

Reducing Emissions from Deforestation and Forest Degrada-
tion (REDD): An effort to create financial value for the carbon stored 
in forests, offering incentives for developing countries to reduce 
emissions from forested lands and invest in low-carbon paths to sus-
tainable development (SD). It is therefore a mechanism for mitiga-
tion that results from avoiding deforestation. REDD+ goes beyond 
reforestation and forest degradation, and includes the role of con-
servation, sustainable management of forests and enhancement of 
forest carbon stocks. The concept was first introduced in 2005 in the 
11th Session of the Conference of the Parties (COP) in Montreal and 
later given greater recognition in the 13th Session of the COP in 2007 
at Bali and inclusion in the Bali Action Plan which called for “pol-
icy approaches and positive incentives on issues relating to reduc-
ing emissions to deforestation and forest degradation in developing 
countries (REDD) and the role of conservation, sustainable manage-
ment of forests and enhancement of forest carbon stock in develop-
ing countries”. Since then, support for REDD has increased and has 
slowly become a framework for action supported by a number of 
countries.

Reference scenario: See Baseline / reference.

Reforestation: Planting of forests on lands that have previously 
sustained forests but that have been converted to some other use. 
Under the United Nations Framework Convention on Climate Change 
(UNFCCC) and the Kyoto Protocol, reforestation is the direct human-
induced conversion of non-forested land to forested land through 
planting, seeding, and / or human-induced promotion of natural seed 
sources, on land that was previously forested but converted to non-
forested land. For the first commitment period of the Kyoto Protocol, 
reforestation activities will be limited to reforestation occurring on 
those lands that did not contain forest on 31 December 1989. 

For a discussion of the term forest and related terms such as afforesta-
tion, reforestation and deforestation, see the IPCC Report on Land Use, 
Land-Use Change and Forestry (IPCC, 2000). See also the Report on 
Definitions and Methodological Options to Inventory Emissions from 
Direct Human-induced Degradation of Forests and Devegetation of 
Other Vegetation Types (IPCC, 2003). 

Renewable energy (RE): See Energy.
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Representative Concentration Pathways (RCPs): Scenarios that 
include time series of emissions and concentrations of the full suite of 
greenhouse gases (GHGs) and aerosols and chemically active gases, as 
well as land use / land cover (Moss et al., 2008). The word representa-
tive signifies that each RCP provides only one of many possible scenar-
ios that would lead to the specific radiative forcing characteristics. The 
term pathway emphasizes that not only the long-term concentration 
levels are of interest, but also the trajectory taken over time to reach 
that outcome (Moss et al., 2010).

RCPs usually refer to the portion of the concentration pathway extend-
ing up to 2100, for which Integrated Assessment Models produced 
corresponding emission scenarios. Extended Concentration Pathways 
(ECPs) describe extensions of the RCPs from 2100 to 2500 that were 
calculated using simple rules generated by stakeholder consultations, 
and do not represent fully consistent scenarios.

Four RCPs produced from Integrated Assessment Models were selected 
from the published literature and are used in the present IPCC Assess-
ment as a basis for the climate predictions and projections presented 
in WGI AR5 Chapters 11 to 14:

RCP2.6 One pathway where radiative forcing peaks at approxi-
mately 3 W m – 2 before 2100 and then declines (the corresponding 
ECP assuming constant emissions after 2100);

RCP4.5 and RCP6.0 Two intermediate stabilization pathways in 
which radiative forcing is stabilized at approximately 4.5 W m – 2 
and 6.0 W m – 2 after 2100 (the corresponding ECPs assuming con-
stant concentrations after 2150);

RCP8.5 One high pathway for which radiative forcing reaches 
greater than 8.5 W m – 2 by 2100 and continues to rise for some 
amount of time (the corresponding ECP assuming constant emis-
sions after 2100 and constant concentrations after 2250).

For further description of future scenarios, see WGI AR5 Box 1.1. See 
also Baseline / reference, Climate prediction, Climate projection, Cli-
mate scenario, Shared socio-economic pathways, Socio-economic sce-
nario, SRES scenarios, and Transformation pathway.

Reservoir: A component of the climate system, other than the atmo-
sphere, which has the capacity to store, accumulate or release a sub-
stance of concern, for example, carbon, a greenhouse gas (GHG) or a 
precursor. Oceans, soils and forests are examples of reservoirs of car-
bon. Pool is an equivalent term (note that the definition of pool often 
includes the atmosphere). The absolute quantity of the substance of 
concern held within a reservoir at a specified time is called the stock. 
In the context of Carbon Dioxide Capture and Storage (CCS), this term 
is sometimes used to refer to a geological carbon dioxide (CO2) stor-
age location. See also Sequestration.

Resilience: The capacity of social, economic, and environmental sys-
tems to cope with a hazardous event or trend or disturbance, respond-
ing or reorganizing in ways that maintain their essential function, iden-
tity, and structure, while also maintaining the capacity for adaptation, 
learning, and transformation (Arctic Council, 2013).

Revegetation: A direct human-induced activity to increase carbon 
stocks on sites through the establishment of vegetation that covers a 
minimum area of 0.05 hectares and does not meet the definitions of 
afforestation and reforestation contained here (UNFCCC, 2002).

Risk: In this report, the term risk is often used to refer to the poten-
tial, when the outcome is uncertain, for adverse consequences on lives, 
livelihoods, health, ecosystems and species, economic, social and cul-
tural assets, services (including environmental services), and infrastruc-
ture.

Risk assessment: The qualitative and / or quantitative scientific 
estimation of risks.

Risk management: The plans, actions, or policies to reduce the 
likelihood and / or consequences of a given risk.

Risk perception: The subjective judgment that people make 
about the characteristics and severity of a risk.

Risk tradeoff: The change in the portfolio of risks that occurs 
when a countervailing risk is generated (knowingly or inadver-
tently) by an intervention to reduce the target risk (Wiener and 
Graham, 2009). See also Adverse side-effect, and Co-benefit.

Risk transfer: The practice of formally or informally shifting the 
risk of financial consequences for particular negative events from 
one party to another.

Scenario: A plausible description of how the future may develop 
based on a coherent and internally consistent set of assumptions about 
key driving forces (e. g., rate of technological change (TC), prices) and 
relationships. Note that scenarios are neither predictions nor forecasts, 
but are useful to provide a view of the implications of developments 
and actions. See also Baseline / reference, Climate scenario, Emission 
scenario, Mitigation scenario, Representative Concentration Pathways 
(RCPs), Shared socio-economic pathways, Socioeconomic scenarios, 
SRES scenarios, Stabilization, and Transformation pathway.

Scope 1, Scope 2, and Scope 3 emissions: See Emissions.

Secondary energy: See Primary energy.

Sectoral Models: See Models.

Sensitivity analysis: Sensitivity analysis with respect to quantitative 
analysis assesses how changing assumptions alters the outcomes. For 
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example, one chooses different values for specific parameters and re-
runs a given model to assess the impact of these changes on model 
output.

Sequestration: The uptake (i. e., the addition of a substance of con-
cern to a reservoir) of carbon containing substances, in particular car-
bon dioxide (CO2), in terrestrial or marine reservoirs. Biological seques-
tration includes direct removal of CO2 from the atmosphere through 
land-use change (LUC), afforestation, reforestation, revegetation, car-
bon storage in landfills, and practices that enhance soil carbon in agri-
culture (cropland management, grazing land management). In parts of 
the literature, but not in this report, (carbon) sequestration is used to 
refer to Carbon Dioxide Capture and Storage (CCS). 

Shadow pricing: Setting prices of goods and services that are not, or 
are incompletely, priced by market forces or by administrative regula-
tion, at the height of their social marginal value. This technique is used 
in cost-benefit analysis (CBA).

Shared socio-economic pathways (SSPs): Currently, the idea of 
SSPs is developed as a basis for new emissions and socio-economic 
scenarios. An SSP is one of a collection of pathways that describe 
alternative futures of socio-economic development in the absence of 
climate policy intervention. The combination of SSP-based socio-eco-
nomic scenarios and Representative Concentration Pathway (RCP)-
based climate projections should provide a useful integrative frame 
for climate impact and policy analysis. See also Baseline / reference, Cli-
mate scenario, Emission scenario, Mitigation scenario, Scenario, SRES 
scenarios, Stabilization, and Transformation pathway.

Short-lived climate pollutant (SLCP): Pollutant emissions that have 
a warming influence on climate and have a relatively short lifetime in 
the atmosphere (a few days to a few decades). The main SLCPs are 
black carbon (BC) (‘soot’), methane (CH4) and some hydroflurorcar-
bons (HFCs) some of which are regulated under the Kyoto Protocol. 
Some pollutants of this type, including CH4, are also precursors to the 
formation of tropospheric ozone (O3), a strong warming agent. These 
pollutants are of interest for at least two reasons. First, because they 
are short-lived, efforts to control them will have prompt effects on 
global warming — unlike long-lived pollutants that build up in the 
atmosphere and respond to changes in emissions at a more sluggish 
pace. Second, many of these pollutants also have adverse local impacts 
such as on human health. 

Sink: Any process, activity or mechanism that removes a greenhouse 
gas (GHG), an aerosol, or a precursor of a GHG or aerosol from the 
atmosphere.

Smart grids: A smart grid uses information and communications tech-
nology to gather data on the behaviours of suppliers and consumers in 
the production, distribution, and use of electricity. Through automated 
responses or the provision of price signals, this information can then 

be used to improve the efficiency, reliability, economics, and sustain-
ability of the electricity network.

Smart meter: A meter that communicates consumption of electricity 
or gas back to the utility provider.

Social cost of carbon (SCC): The net present value of climate dam-
ages (with harmful damages expressed as a positive number) from one 
more tonne of carbon in the form of carbon dioxide (CO2), conditional 
on a global emissions trajectory over time.

Social costs: See Private costs.

Socio-economic scenario: A scenario that describes a possible future 
in terms of population, gross domestic product (GDP), and other socio-
economic factors relevant to understanding the implications of climate 
change. See also Baseline / reference, Climate scenario, Emission sce-
nario, Mitigation scenario, Representative Concentration Pathways 
(RCPs), Scenario, Shared socio-economic pathways, SRES scenarios, 
Stabilization, and Transformation pathway.

Solar energy: Energy from the sun. Often the phrase is used to mean 
energy that is captured from solar radiation either as heat, as light that 
is converted into chemical energy by natural or artificial photosynthe-
sis, or by photovoltaic panels and converted directly into electricity.

Solar Radiation Management (SRM): Solar Radiation Manage-
ment refers to the intentional modification of the earth’s shortwave 
radiative budget with the aim to reduce climate change according to a 
given metric (e. g., surface temperature, precipitation, regional impacts, 
etc.). Artificial injection of stratospheric aerosols and cloud brightening 
are two examples of SRM techniques. Methods to modify some fast-
responding elements of the longwave radiative budget (such as cirrus 
clouds), although not strictly speaking SRM, can be related to SRM. 
SRM techniques do not fall within the usual definitions of mitigation 
and adaptation (IPCC, 2012, p. 2). See also Carbon Dioxide Removal 
(CDR) and Geoengineering.

Source: Any process, activity or mechanism that releases a green-
house gas (GHG), an aerosol or a precursor of a GHG or aerosol into 
the atmosphere. Source can also refer to, e. g., an energy source.

Spill-over effect: The effects of domestic or sector mitigation mea-
sures on other countries or sectors. Spill-over effects can be positive 
or negative and include effects on trade, (carbon) leakage, transfer of 
innovations, and diffusion of environmentally sound technology and 
other issues.

SRES scenarios: SRES scenarios are emission scenarios developed by 
Nakićenović and Swart (2000) and used, among others, as a basis for 
some of the climate projections shown in Chapters 9 to 11 of IPCC 
(2001) and Chapters 10 and 11 of IPCC (2007) as well as WGI AR5. The 
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following terms are relevant for a better understanding of the structure 
and use of the set of SRES scenarios:

Scenario family: Scenarios that have a similar demographic, soci-
etal, economic and technical change storyline. Four scenario fami-
lies comprise the SRES scenario set: A1, A2, B1, and B2.

Illustrative Scenario: A scenario that is illustrative for each of the 
six scenario groups reflected in the Summary for Policymakers of 
Nakićenović and Swart (2000). They include four revised marker 
scenarios for the scenario groups A1B, A2, B1, B2, and two addi-
tional scenarios for the A1FI and A1T groups. All scenario groups 
are equally sound.

Marker Scenario: A scenario that was originally posted in draft 
form on the SRES website to represent a given scenario family. The 
choice of markers was based on which of the initial quantifications 
best reflected the storyline, and the features of specific models. 
Markers are no more likely than other scenarios, but are consid-
ered by the SRES writing team as illustrative of a particular sto-
ryline. They are included in revised form in Nakićenović and Swart 
(2000). These scenarios received the closest scrutiny of the entire 
writing team and via the SRES open process. Scenarios were also 
selected to illustrate the other two scenario groups.

Storyline: A narrative description of a scenario (or family of scenar-
ios), highlighting the main scenario characteristics, relationships 
between key driving forces and the dynamics of their evolution.

See also Baseline / reference, Climate scenario, Emission scenario, 
Mitigation scenario, Representative Concentration Pathways (RCPs), 
Shared socio-economic pathways, Socio-economic scenario, Stabiliza-
tion, and Transformation pathway.

Stabilization (of GHG or CO2-equivalent concentration): A state 
in which the atmospheric concentrations of one greenhouse gas (GHG) 
(e. g., carbon dioxide) or of a CO2-equivalent basket of GHGs (or a com-
bination of GHGs and aerosols) remains constant over time. 

Standards: Set of rules or codes mandating or defining product per-
formance (e. g., grades, dimensions, characteristics, test methods, and 
rules for use). Product, technology or performance standards establish 
minimum requirements for affected products or technologies. Stan-
dards impose reductions in greenhouse gas (GHG) emissions associ-
ated with the manufacture or use of the products and / or application 
of the technology. 

Stratosphere: The highly stratified region of the atmosphere above the 
troposphere extending from about 10 km (ranging from 9 km at high 
latitudes to 16 km in the tropics on average) to about 50 km altitude. 

Structural change: Changes, for example, in the relative share of 
gross domestic product (GDP) produced by the industrial, agricultural, 

or services sectors of an economy, or more generally, systems transfor-
mations whereby some components are either replaced or potentially 
substituted by other components.

Subsidiarity: The principle that decisions of government (other things 
being equal) are best made and implemented, if possible, at the lowest 
most decentralized level, that is, closest to the citizen. Subsidiarity is 
designed to strengthen accountability and reduce the dangers of mak-
ing decisions in places remote from their point of application. The prin-
ciple does not necessarily limit or constrain the action of higher orders 
of government, but merely counsels against the unnecessary assump-
tion of responsibilities at a higher level.

Sulphur hexafluoride (SF6): One of the six types of greenhouse gases 
(GHGs) to be mitigated under the Kyoto Protocol. SF6 is largely used 
in heavy industry to insulate high-voltage equipment and to assist in 
the manufacturing of cable-cooling systems and semi-conductors. See 
Global Warming Potential (GWP) and Annex II.9.1 for GWP values.

Sustainability: A dynamic process that guarantees the persistence of 
natural and human systems in an equitable manner.

Sustainable development (SD): Development that meets the needs 
of the present without compromising the ability of future generations 
to meet their own needs (WCED, 1987).

Technical potential: See Potential.

Technological change (TC): Economic models distinguish autono-
mous (exogenous), endogenous, and induced TC. 

Autonomous (exogenous) technological change: Autonomous 
(exogenous) technological change is imposed from outside the 
model (i. e., as a parameter), usually in the form of a time trend 
affecting factor and / or energy productivity and therefore energy 
demand and / or economic growth.

Endogenous technological change: Endogenous technologi-
cal change is the outcome of economic activity within the model 
(i. e., as a variable) so that factor productivity or the choice of tech-
nologies is included within the model and affects energy demand 
and / or economic growth.

Induced technological change: Induced technological change 
implies endogenous technological change but adds further 
changes induced by policies and measures, such as carbon taxes 
triggering research and development efforts.

Technological learning: See Learning curve / rate.

Technological / knowledge spillovers: Any positive externality that 
results from purposeful investment in technological innovation or 
development (Weyant and Olavson, 1999).
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Territorial emissions: See Emissions.

Trace gas: A minor constituent of the atmosphere, next to nitrogen 
and oxygen that together make up 99 % of all volume. The most impor-
tant trace gases contributing to the greenhouse effect are carbon 
dioxide (CO2), ozone (O3), methane (CH4), nitrous oxide (N2O), per-
fluorocarbons (PFCs), chlorofluorocarbons (CFCs), hydrofluorocarbons 
(HFCs), sulphur hexafluoride (SF6) and water vapour (H2O).

Tradable (green) certificates scheme: A market-based mechanism 
to achieve an environmentally desirable outcome (renewable energy 
(RE) generation, energy efficiency (EE) requirements) in a cost-effective 
way by allowing purchase and sale of certificates representing under 
and over-compliance respectively with a quota.

Tradable (emission) permit: See Emission permit.

Tradable quota system: See Emissions trading.

Transaction costs: The costs that arise from initiating and completing 
transactions, such as finding partners, holding negotiations, consulting 
with lawyers or other experts, monitoring agreements, or opportunity 
costs, such as lost time or resources (Michaelowa et al., 2003).

Transformation pathway: The trajectory taken over time to meet 
different goals for greenhouse gas (GHG) emissions, atmospheric con-
centrations, or global mean surface temperature change that implies 
a set of economic, technological, and behavioural changes. This can 
encompass changes in the way energy and infrastructure is used and 
produced, natural resources are managed, institutions are set up, 
and in the pace and direction of technological change (TC). See also 
Baseline / reference, Climate scenario, Emission scenario, Mitigation 
scenario, Representative Concentration Pathways (RCPs), Scenario, 
Shared socio-economic pathways, Socio-economic scenarios, SRES sce-
narios, and Stabilization.

Transient climate response: See Climate sensitivity.

Transit oriented development (TOD): Urban development within 
walking distance of a transit station, usually dense and mixed with the 
character of a walkable environment.

Troposphere: The lowest part of the atmosphere, from the surface 
to about 10 km in altitude at mid-latitudes (ranging from 9 km at 
high latitudes to 16 km in the tropics on average), where clouds and 
weather phenomena occur. In the troposphere, temperatures generally 
decrease with height. See also Stratosphere.

Uncertainty: A cognitive state of incomplete knowledge that can 
result from a lack of information or from disagreement about what 
is known or even knowable. It may have many types of sources, from 
imprecision in the data to ambiguously defined concepts or terminol-

ogy, or uncertain projections of human behaviour. Uncertainty can 
therefore be represented by quantitative measures (e. g., a probability 
density function) or by qualitative statements (e. g., reflecting the judg-
ment of a team of experts) (see Moss and Schneider, 2000; Manning 
et al., 2004; Mastrandrea et al., 2010). See also Agreement, Evidence, 
Confidence and Likelihood.

Unconventional resources: A loose term to describe fossil fuel 
reserves that cannot be extracted by the well-established drilling 
and mining processes that dominated extraction of coal, gas, and oil 
throughout the 20th century. The boundary between conventional and 
unconventional resources is not clearly defined. Unconventional oils 
include oil shales, tar sands / bitumen, heavy and extra heavy crude oils, 
and deep-sea oil occurrences. Unconventional natural gas includes gas 
in Devonian shales, tight sandstone formations, geopressured aquifers, 
coal-bed gas, and methane (CH4) in clathrate structures (gas hydrates) 
(Rogner, 1997).

United Nations Framework Convention on Climate Change 
(UNFCCC): The Convention was adopted on 9 May 1992 in New York 
and signed at the 1992 Earth Summit in Rio de Janeiro by more than 
150 countries and the European Community. Its ultimate objective is 
the ‘stabilisation of greenhouse gas concentrations in the atmosphere 
at a level that would prevent dangerous anthropogenic interference 
with the climate system’. It contains commitments for all Parties under 
the principle of ‘common but differentiated responsibilities’. Under the 
Convention, Parties included in Annex I aimed to return greenhouse 
gas (GHG) emissions not controlled by the Montreal Protocol to 1990 
levels by the year 2000. The convention entered in force in March 
1994. In 1997, the UNFCCC adopted the Kyoto Protocol. 

Urban heat island: See Heat island.

Verified Emissions Reductions: Emission reductions that are verified 
by an independent third party outside the framework of the United 
Nations Framework Convention on Climate Change (UNFCCC) and its 
Kyoto Protocol. Also called ‘Voluntary Emission Reductions’.

Volatile Organic Compounds (VOCs): Important class of organic 
chemical air pollutants that are volatile at ambient air conditions. 
Other terms used to represent VOCs are hydrocarbons (HCs), reactive 
organic gases (ROGs) and non-methane volatile organic compounds 
(NMVOCs). NMVOCs are major contributors — together with nitrogen 
oxides (NOX), and carbon monoxide (CO) — to the formation of photo-
chemical oxidants such as ozone (O3).

Voluntary action: Informal programmes, self-commitments, and dec-
larations, where the parties (individual companies or groups of compa-
nies) entering into the action set their own targets and often do their 
own monitoring and reporting.
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Voluntary agreement (VA): An agreement between a government 
authority and one or more private parties to achieve environmental 
objectives or to improve environmental performance beyond compli-
ance with regulated obligations. Not all voluntary agreements are truly 
voluntary; some include rewards and / or penalties associated with join-
ing or achieving commitments.

Voluntary Emission Reductions: See Verified Emissions Reductions.

Watts per square meter (W m-2): See Radiative forcing.

Wind energy: Kinetic energy from air currents arising from uneven 
heating of the earth’s surface. A wind turbine is a rotating machine for 
converting the kinetic energy of the wind to mechanical shaft energy 
to generate electricity. A windmill has oblique vanes or sails and the 
mechanical power obtained is mostly used directly, for example, for 
water pumping. A wind farm, wind project, or wind power plant is a 
group of wind turbines interconnected to a common utility system 
through a system of transformers, distribution lines, and (usually) one 
substation.
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Acronyms and chemical symbols

AAU	 Assigned Amount Unit
ADB	 Asian Development Bank
AfDB	 African Development Bank
AFOLU	 Agriculture, Forestry and Other Land Use
AME	 Asian Modeling Exercise
AMPERE	 Assessment of Climate Change Mitigation Pathways 

and Evaluation of the Robustness of Mitigation Cost 
Estimates

AOSIS	 Alliance of Small Island States
APEC	 Asia-Pacific Economic Cooperation
AR4	 IPCC Fourth Assessment Report 
ASEAN	 Association of Southeast Asian Nations 
ASIA	 Non-OECD Asia
BAMs	 Border adjustment measures
BAT	 Best available technology
BAU	 Business-as-usual 
BC	 Black carbon
BECCS	 Bioenergy with carbon dioxide capture and storage
BEVs	 Battery electric vehicles 
BNDES	 Brazilian Development Bank
BOD	 Biochemical Oxygen Demand
BRT	 Bus rapid transit 
C	 Carbon
C40	 C40 Cities Climate Leadership Group
CBA	 Cost-benefit analysis 
CBD	 Convention on Biological Diversity 
CBD	 Central business district
CCA	 Climate Change Agreement 
CCE	 Cost of conserved energy 
CCL	 Climate Change Levy 
CCS	 Carbon dioxide capture and storage 
CDM	 Clean Development Mechanism 
CDR	 Carbon dioxide removal 
CEA	 Cost-effectiveness analysis 
CERs	 Certified Emissions Reductions 
CFCs	 Chlorofluorocarbons
CGE	 Computable general equilibrium 
CH4	 Methane
CHP	 Combined heat and power
CIFs	 Climate Investment Funds
CMIP	 Coupled Model Intercomparison Project
CNG	 Compressed natural gas
CO	 Carbon monoxide
CO2	 Carbon dioxide
CO2eq	 Carbon dioxide-equivalent, CO2-equivalent
COD	 Chemical oxygen demand 
COP	 Conference of the Parties 
CRF	 Capital recovery factor
CSP	 Concentrated solar power
CTCN	 Climate Technology Centre and Network

DAC	 Direct air capture 
DAC	 Development Assistance Committee 
DALYs	 Disability-adjusted life years
DANN	 Designated National Authority
DCs	 Developing countries
DRI	 Direct reduced iron 
DSM	 Demand-side management
EAF	 Electric arc furnace
EAS	 East Asia
ECA	 Economic Commission for Africa
ECN	 Energy Research Center of the Netherlands
ECOWAS	 Economic Community of West African States
EDGAR	 Emissions Database for Global Atmospheric Research 
EE	 Energy efficiency 
EIA	 U. S. Energy Information Administration
EITs	 Economies in Transition 
EMF	 Energy Modeling Forum 
EPA	 U. S. Environmental Protection Agency 
EPC	 Energy performance contracting 
ERU	 Emissions reduction unit
ESCOs	 Energy service companies 
ETS	 Emissions Trading System
EU	 European Union
EU ETS	 European Union Emissions Trading Scheme 
EVs	 Electric vehicles
F-gases	 Fluorinated gases 
FAO	 Food and Agriculture Organization of the United 

Nations 
FAQ	 Frequently asked questions
FAR	 IPCC First Assessment Report 
FCVs	 Fuel cell vehicles
FDI	 Foreign Direct Investment 
FE	 Final energy
FEEM	 Fondazione Eni Enrico Mattei
FF&I	 Fossil fuel and industrial 
FIT 	 Feed-in tariff
FOLU	 Forestry and Other Land Use
FSF	 Fast-start Finance
G20	 Group of Twenty Finance Ministers
G8	 Group of Eight Finance Ministers
GATT	 General Agreement on Tariffs and Trade
GCAM	 Global Change Assessment Model
GCF	 Green Climate Fund
GCM	 General Circulation Model
GDP	 Gross domestic product 
GEA	 Global Energy Assessment
GEF	 Global Environment Facility
GHG	 Greenhouse gas 
GNE	 Gross national expenditure
GSEP	 Global Superior Energy Performance Partnership
GTM	 Global Timber Model 
GTP	 Global Temperature Change Potential 
GWP	 Global Warming Potential 
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H2	 Hydrogen 
HCFCs	 Hydrochlorofluorocarbons
HDI	 Human Development Index 
HDVs	 Heavy-duty vehicles 
HFCs	 Hydrofluorocarbon
HFC-23	 Trifluoromethane 
Hg	 Mercury 
HHV	 Higher heating value 
HIC	 High-income countries 
HVAC	 Heating, ventilation and air conditioning
IAEA	 International Atomic Energy Agency
IAMC	 Integrated Assessment Modelling Consortium 
ICAO	 International Civil Aviation Organization
ICE	 Internal combustion engine
ICLEI	 International Council for Local Environmental Initia-

tives
ICT	 Information and communication technology 
IDB	 Inter-American Development Bank 
IDP	 Integrated Design Process
IEA	 International Energy Agency 
IET	 International Emissions Trading
IGCC	 Integrated gasification combined cycle
IIASA	 International Institute for Applied Systems Analysis 
iLUC	 Indirect land-use change
IMF	 International Monetary Fund
IMO	 International Maritime Organization
INT TRA	 International transport
IO	 International organization
IP	 Intellectual property 
IPAT	 Income-Population-Affluence-Technology
IPCC	 Intergovernmental Panel on Climate Change 
IRENA	 International Renewable Energy Agency
IRR	 Internal rate of return
ISO	 International Organization for Standardization
JI	 Joint Implementation 
JICA	 Japan International Cooperation Agency
KfW	 Kreditanstalt für Wiederaufbau
LAM	 Latin America 
LCA	 Lifecycle Assessment 
LCCC	 Levelized costs of conserved carbon 
LCD	 Liquid crystal display
LCCE	 Levelized cost of conserved energy 
LCOE	 Levelized costs of energy
LDCs	 Least Developed Countries
LDCF	 Least Developed Countries Fund
LDVs	 Light-duty vehicles
LED	 Light-emitting diode
LHV	 Lower heating value
LIC	 Low-income countries 
LIMITS	 Low Climate Impact Scenarios and Implications of 

Required Tight Emission Control Strategies
LMC	 Lower-middle income countries 
LNG	 Liquefied natural gas

LPG	 Liquefied petroleum gas 
LUC	 Land-use change
LULUCF	 Land Use, Land-Use Change and Forestry 
MAC	 Marginal abatement cost
MAF	 Middle East and Africa 
MAGICC	 Model for the Assessment of Greenhouse Gas Induced 

Climate Change
MCA	 Multi-criteria analysis 
MDB	 Multilateral Development Bank 
MDGs	 Millennium Development Goals 
MEF	 Major Economies Forum on Energy and Climate
MER	 Market exchange rate
MFA	 Material flow analysis 
MNA	 Middle East and North Africa
MRIO	 Multi-Regional Input-Output Analysis
MRV	 Measurement, reporting, and verification 
MSW	 Municipal solid waste
N	 Nitrogen
N2O	 Nitrous oxide
NAM	 North America
NAMA	 Nationally Appropriate Mitigation Action
NAPA	 National Adaptation Programmes of Action
NAS	 U. S. National Academy of Science
NF3	 Nitrogen trifluoride
NGCC	 Natural gas combined cycle
NGO	 Non-governmental organization
NH3	 Ammonia
NOx	 Nitrogen oxides
NPV	 Net present value
NRC	 U. S. National Research Council
NREL	 U. S. National Renewable Energy Laboratory 
NZEB	 Net zero energy buildings
O3	 Ozone
O&M	 Operation and maintenance
OC	 Organic carbon
ODA	 Official development assistance
ODS	 Ozone-depleting substances 
OECD	 Organisation for Economic Co-operation and Develop-

ment 
OPEC	 Organization of Petroleum Exporting Countries 
PACE	 Property Assessed Clean Energy 
PAS	 South-East Asia and Pacific
PBL	 Netherlands Environmental Assessment Agency
PC	 Pulverized Coal
PDF	 Probability density function
PEVs	 Plug-in electric vehicles 
PFC	 Perfluorocarbons 
PHEVs	 Plug-in hybrid electric vehicles 
PIK	 Potsdam Institute for Climate Impact Research 
PM	 Particulate Matter 
PNNL	 Pacific Northwest National Laboratories 
POEDC	 Pacific OECD 1990 members (Japan, Aus, NZ)
PPP	 Polluter pays principle
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PPP	 Purchasing power parity
PV	 Photovoltaic
R&D	 Research and development 
RCPs	 Representative Concentration Pathways
RD&D	 Research, Development and Demonstration 
RE	 Renewable energy 
RECIPE	 Report on Energy and Climate Policy in Europe
REDD	 Reducing Emissions From Deforestation and Forest 

Degradation
REEEP	 Renewable Energy and Energy Efficiency Partnership 
RES	 Renewable energy sources
RGGI	 Regional Greenhouse Gas Initiative
RoSE	 Roadmaps towards Sustainable Energy futures
ROW	 Rest of the World
RPS	 Renewable portfolio standards
SAR	 IPCC Second Assessment Report 
SAS	 South Asia 
SCC	 Social cost of carbon 
SCCF	 Special Climate Change Fund
SCP	 Sustainable consumption and production
SD	 Sustainable development 
SF6	 Sulphur hexafluoride
SLCP	 Short-lived climate pollutant
SMEs	 Small and Medium Enterprises 
SO2	 Sulphur dioxide
SPM	 Summary for Policymakers
SRES	 IPCC Special Report on Emission Scenarios 
SREX	 IPCC Special Report on Managing the Risks of Extreme 

Events and Disasters to Advance Climate Change 
Adaptation

SRM	 Solar radiation management 
SRREN	 IPCC Special Report on Renewable Energy Sources and 

Climate Change Mitigation 
SRCSS	 IPCC Special Report on Carbon dioxide Capture and 

Storage
SSA	 Sub-Saharan Africa
SUVs	 Sport Utility Vehicles
SWF	 Social welfare function
TAR	 IPCC Third Assessment Report 
TC	 Technological change 

TCR	 Transient climate response
Th	 Thorium
TNAs	 Technology Needs Assessments 
TOD	 Transit-oriented development 
TPES	 Total primary energy supply
TRIPs	 Trade Related Intellectual Property Rights 
TT	 Technology transfer 
U	 Uranium
UHI	 Urban heat island 
UMC	 Upper-middle income countries 
UN	 United Nations
UN DESA	 United Nations Department for Economic and Social 

Affairs
UNCCD	 United Nations Convention to Combat Desertification
UNCSD	 United Nations Conference on Sustainable Develop-

ment 
UNDP	 United Nations Development Programme 
UNEP	 United Nations Environment Programme 
UNESCO	 United Nations Educational, Scientific and Cultural 

Organization 
UNFCCC	 United Nations Framework Convention on Climate 

Change 
UNIDO	 United Nations Industrial Development Organization 
USD	 U. S. Dollars
VAs	 Voluntary agreements 
VOCs	 Volatile Organic Compounds 
VKT	 Vehicle kilometers travelled
WACC	 Weighted costs of capital
WBCSD	 World Business Council on Sustainable Development
WCED	 World Commission on Environment and Development
WCI	 Western Climate Initiative 
WEU	 Western Europe
WGI	 IPCC Working Group I
WGII	 IPCC Working Group II
WGIII	 IPCC Working Group III
WHO	 World Health Organization
WTP	 Willingness to pay
WWTP	 Wastewater plant
WTO	 World Trade Organization
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This annex on methods and metrics provides background information 
on material used in the Working Group III Contribution to the Intergov-
ernmental Panel on Climate Change (IPCC) Fifth Assessment Report 
(WGIII AR5). The material presented in this annex documents metrics, 
methods, and common data sets that are typically used across multiple 
chapters of the report. The annex is composed of three parts: Part I 
introduces standards metrics and common definitions adopted in the 
report; Part II presents methods to derive or calculate certain quanti-
ties used in the report; and Part III provides more detailed background 
information about common data sources that go beyond what can be 
included in the chapters. While this structure may help readers to navi-
gate through the annex, it is not possible in all cases to unambiguously 
assign a certain topic to one of these parts, naturally leading to some 
overlap between the parts.

Part I:	Units and definitions

A.II.1	 Standard units and 
unit conversion

The following section, A.II.1.1, introduces standard units of measure-
ment that are used throughout this report. This includes Système Inter-
national (SI) units, SI-derived units, and other non-SI units as well the 
standard prefixes for basic physical units. It builds upon similar mate-
rial from previous IPCC reports (IPCC, 2001; Moomaw et al., 2011). 

In addition to establishing a consistent set of units for reporting 
throughout the report, harmonized conventions for converting units 
as reported in the scientific literature have been established and are 
summarized in Section A.II.1.2 (physical unit conversion) and Section 
A.II.1.3 (monetary unit conversion).

A.II.1.1	 Standard units

Table A.II.1 | Système International (SI) units.

Physical Quantity  Unit  Symbol  

 Length  meter   m  

 Mass  kilogram   kg  

 Time  second   s  

 Thermodynamic temperature  kelvin  K  

 Amount of Substance  mole   mol  

Table A.II.2 | Special names and symbols for certain SI-derived units.

Physical Quantity  Unit  Symbol   Definition  

 Force Newton  N  kg m s^2  

 Pressure  Pascal   Pa   kg m^ – 1 s^ – 2 (= N m^ – 2)  

 Energy  Joule   J   kg m^2 s^ – 2  

 Power  Watt   W   kg m^2 s^ – 3 (= J s^ – 1)  

 Frequency  Hertz   Hz   s^ – 1 (cycles per second)  

 Ionizing Radiation Dose sievert Sv J kg^-1

Table A.II.3 | Non-SI standard units.

Monetary units Unit Symbol

Currency (Market 
Exchange Rate, MER)

constant US Dollar 2010 USD2010

Currency (Purchasing 
Power Parity, PPP)

constant International Dollar 2005 Int$2005

Emission- and Climate-
related units

Unit Symbol

Emissions Metric tonnes t

CO2 Emissions Metric tonnes CO2 tCO2

CO2-equivalent Emissions Metric tonnes CO2-equivalent* tCO2eq

Abatement Costs and 
Emissions Prices / Taxes

constant US Dollar 2010 
per metric tonne

USD2010 / t

CO2 concentration or Mixing 
Ratio (μmol mol – 1)

Parts per million (10^6) ppm

CH4 concentration or Mixing 
Ratio (μmol mol – 1)

Parts per billion (10^9) ppb

N2O concentration or Mixing 
Ratio (μmol mol – 1)

Parts per billion (10^9) ppb

Radiative forcing Watts per square meter W / m2

Energy-related units Unit Symbol

Energy Joule J

Electricity and Heat generation Watt Hours Wh

Power (Peak Capacity) Watt (Watt thermal, Watt electric) W (Wth, We)

Capacity Factor Percent %

Technical and Economic Lifetime Years yr

Specific Energy Investment Costs US Dollar 2010 per kW 
(peak capacity)

USD2010 / kW

Energy Costs (e. g., LCOE) and Prices constant US Dollar 2010 per GJ or  
US Cents 2010 per kWh

USD2010 / GJ and 
USct2010 / kWh

Passenger-Distance passenger-kilometer p-km

Payload-Distance tonne-kilometer t-km

Land-related units Unit Symbol

Area Hectare ha

Note:
*	 CO2-equivalent emissions in this report are — if not stated otherwise — aggregated 

using global warming potentials (GWPs) over a 100-year time horizon, often 
derived from the IPCC Second Assessment Report (IPCC, 1995a). A discussion 
about different GHG metrics can be found in Sections 1.2.5 and 3.9.6 (see 
Annex II.9.1 for the GWP values of the different GHGs).
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Table A.II.4 | Prefixes for basic physical units.

Multiple Prefix Symbol Fraction Prefix Symbol 

1E+21 zeta Z 1E-01 deci d 

1E+18 exa E 1E-02 centi c 

1E+15 peta P 1E-03 milli m 

1E+12 tera T 1E-06 micro μ 

1E+09 giga G 1E-09 nano n 

1E+06 mega M 1E-12 pico p 

1E+03 kilo k 1E-15 femto f 

1E+02 hecto h 1E-18 atto a

1E+01 deca da 1E-21 zepto z

A.II.1.2	 Physical unit conversion

Table A.II.5 | Conversion table for common mass units (IPCC, 2001).

To: kg t lt St lb

From: multiply by:

kilogram kg 1 1.00E-03 9.84E-04 1.10E-03 2.20E+00

tonne t 1.00E+03 1 9.84E-01 1.10E+00 2.20E+03

long ton lt 1.02E+03 1.02E+00 1 1.12E+00 2.24E+03

short ton st 9.07E+02 9.07E-01 8.93E-01 1 2.00E+03

Pound lb 4.54E-01 4.54E-04 4.46E-04 5.00E-04 1

A.II.1.3	 Monetary unit conversion

To achieve comparability across cost und price information from dif-
ferent regions, where possible all monetary quantities reported in the 
WGIII AR5 have been converted to constant US Dollars 2010 (USD2010). 
This only applies to monetary quantities reported in market exchange 
rates (MER), and not to those reported in purchasing power parity 
(PPP, unit: Int$). 

To facilitate a consistent monetary unit conversion process, a simple 
and transparent procedure to convert different monetary units from 
the literature to USD2010 was established which is described below.

It is important to note that there is no single agreed upon method 
of dealing with monetary unit conversion, and thus data availability, 
transparency, and — for practical reasons — simplicity, were the most 
important criteria for choosing a method to be used throughout this 
report. 

To convert from year X local currency unit (LCUX) to 2010 US Dollars 
(USD2010) two steps are necessary:

1.	 in- / deflating from year X to 2010, and
2.	 converting from LCU to USD. 

Table A.II.6 | Conversion table for common volumetric units (IPCC, 2001).

To: gal US gal UK bbl ft3 l m3

From: multiply by:

US Gallon gal US 1 8.33E-01 2.38E-02 1.34E-01 3.79E+00 3.80E-03

UK / Imperial Gallon gal UK 1.20E+00 1 2.86E-02 1.61E-01 4.55E+00 4.50E-03

Barrel bbl 4.20E+01 3.50E+01 1 5.62E+00 1.59E+02 1.59E-01

Cubic foot ft3 7.48E+00 6.23E+00 1.78E-01 1 2.83E+01 2.83E-02

Liter l 2.64E-01 2.20E-01 6.30E-03 3.53E-02 1 1.00E-03

Cubic meter m3 2.64E+02 2.20E+02 6.29E+00 3.53E+01 1.00E+03 1

Table A.II.7 | Conversion table for common energy units (NAS, 2007; IEA, 2012a).

To: TJ Gcal Mtoe Mtce MBtu GWh

From: multiply by:

Tera Joule TJ 1 2.39E+02 2.39E-05 3.41E-05 9.48E+02 2.78E-01

Giga Calorie Gcal 4.19E-03 1 1.00E-07 1.43E-07 3.97E+00 1.16E-03

Mega Tonne Oil Equivalent Mtoe 4.19E+04 1.00E+07 1 1.43E+00 3.97E+07 1.16E+04

Mega Tonne Coal Equivalent Mtce 2.93E+04 7.00E+06 7.00E-01 1 2.78E+07 8.14E+03

Million British Thermal Units MBtu 1.06E-03 2.52E-01 2.52E-08 3.60E-08 1 2.93E-04

Giga Watt Hours GWh 3.60E+00 8.60E+02 8.60E-05 0.000123 3.41E+03 1
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In practice, the order of applying these two steps will lead to different 
results. In this report, the conversion route LCUX -> LCU2010 -> USD2010 
is adopted, i. e., national / regional deflators are used to measure coun-
try- or region-specific inflation between year X and 2010 in local cur-
rency and current (2010) exchange rates are then used to convert to 
USD2010.

To reflect the change in prices of all goods and services that an econ-
omy produces, and to keep the procedure simple, the economy’s GDP 
deflator is chosen to convert to a common base year. Finally, when 
converting from LCU2010 to USD2010, official 2010 exchange rates, which 
are readily available, but on the downside often fluctuate significantly 
in the short term, are adopted for currency conversion in the report.

Consistent with the choice of the World Bank databases as the primary 
source for gross domestic product (GDP) (see Section A.II.9) and other 
financial data throughout the report, deflators and exchange rates 
from the World Bank’s World Development Indicators (WDI) database 
(World Bank, 2013) is used. 

To summarize, the following procedure has been adopted to convert 
monetary quantities reported in LCUX to USD2010:

1.	 Use the country- / region-specific deflator and multiply with 
the deflator value to convert from LCUX to LCU2010. In case 
national / regional data are reported in non-LCU units (e. g., USDX 
or EuroX), which is often the case in multi-national or global stud-
ies, apply the corresponding currency deflator to convert to 2010 
currency (i. e., the US deflator and the Eurozone deflator in the 
examples above). 

2.	 Use the appropriate 2010 exchange rate to convert from LCU2010 
to USD2010.

A.II.2	 Region definitions

In this report a number of different sets of regions are used to present 
results of analysis. These region sets are referred to as RC5, RC10 
(Region Categorization 5 and 10, respectively), see Table A.II.8, and 
ECON4 (income-based economic categorization), see Table A.II.9. RC10 
is a breakdown of RC5 and can be aggregated to RC5 as shown in 
Table A.II.8. Note that for some exceptional cases in this report there 
are minor deviations from the RC5 and RC10 definitions given here. In 
addition to these three standard aggregations some chapters feature 
an 11 region aggregation (GEA R11) used in the Global Energy Assess-
ment (GEA, 2012) and other studies.

A.II.2.1	 RC10

NAM (North America): Canada, Guam, Saint Pierre and Miquelon, 
United States 

WEU (Western Europe): Aland Islands, Andorra, Austria, Belgium, 
Channel Islands, Denmark, Faroe Islands, Finland, France, Ger-
many, Gibraltar, Greece, Greenland, Guernsey, Holy See (Vatican 
City State), Iceland, Ireland, Isle of Man, Italy, Jersey, Liechtenstein, 
Luxembourg, Monaco, Netherlands, Norway, Portugal, San Marino, 
Spain, Svalbard and Jan Mayen, Sweden, Switzerland, United King-
dom, Turkey 

POECD (Pacific OECD): Australia, Japan, New Zealand 

EIT (Economies in Transition): Croatia, Cyprus, Czech Republic, Esto-
nia, Latvia, Lithuania, Malta, Poland, Russian Federation, Slovakia, 

Table A.II.8 | Description of regions in the RC5 and RC10 region sets.

RC5 RC10

OECD-1990 OECD Countries in 1990 NAM North America

WEU Western Europe

POECD Pacific OECD (Japan, Australia, New Zealand)

EIT Economies in Transition (sometimes referred to as Reforming Economies) EIT Economies in Transition 
(Eastern Europe and  
part of former Soviet Union)

LAM Latin America and Caribbean LAM Latin America and Caribbean

MAF Middle East and Africa SSA Sub-Saharan Africa

MNA Middle East and North Africa

ASIA Non-OECD Asia EAS East Asia

SAS South Asia

PAS South-East Asia and Pacific

INT TRA International transport INT TRA International transport
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Slovenia, Kyrgyzstan, Tajikistan, Armenia, Georgia, Moldova (Repub-
lic of), Ukraine, Uzbekistan, Albania, Azerbaijan, Belarus, Bosnia and 
Herzegovina, Bulgaria, Hungary, Kazakhstan, Macedonia, Montenegro, 
Romania, Serbia, Serbia and Montenegro, Turkmenistan 

Table A.II.9 | ECON4 income-based economic country aggregations.

HIC High-income countries

UMC Upper-middle income countries

LMC Lower-middle income countries

LIC Low income countries

INT-TRA International transport

LAM (Latin America and Caribbean): Anguilla, Antarctica, Antigua 
and Barbuda, Aruba, Bahamas, Barbados, Bermuda, Bouvet Island, 
British Virgin Islands, Cayman Islands, Chile, Curacao, Falkland Islands 
(Malvinas), French Guiana, French Southern Territories, Guadeloupe, 
Martinique, Montserrat, Netherlands Antilles, Puerto Rico, Saint Kitts 
and Nevis, Sint Maarten, South Georgia and the South Sandwich 
Islands, Trinidad and Tobago, Turks and Caicos Islands, Uruguay, US 
Virgin Islands, Haiti, Bolivia, El Salvador, Guatemala, Guyana, Hondu-
ras, Nicaragua, Paraguay, Argentina, Belize, Brazil, Colombia, Costa 
Rica, Cuba, Dominica, Dominican Republic, Ecuador, Grenada, Jamaica, 
Mexico, Panama, Peru, Saint Lucia, Saint Vincent and the Grenadines, 
Suriname, Venezuela

SSA (Sub Saharan Africa): Equatorial Guinea, Mayotte, Reunion, 
Saint Helena, Benin, Burkina Faso, Burundi, Central African Repub-
lic, Chad, Comoros, Congo (The Democratic Republic of the), Eritrea, 
Ethiopia, Gambia, Guinea, Guinea-Bissau, Kenya, Liberia, Madagascar, 
Malawi, Mali, Mozambique, Niger, Rwanda, Sierra Leone, Somalia, Tan-
zania, Togo, Uganda, Zimbabwe, Cameroon, Cape Verde, Congo, Cote 
d’Ivoire, Djibouti, Ghana, Lesotho, Mauritania, Nigeria, Sao Tome and 
Principe, Senegal, Swaziland, Zambia, Angola, Botswana, Gabon, Mau-
ritius, Namibia, Seychelles, South Africa

MNA (Middle East and North Africa): Bahrain, Israel, Kuwait, Oman, 
Qatar, Saudi Arabia, United Arab Emirates, Egypt, Morocco, Palestine, 
South Sudan, Sudan, Syrian Arab Republic, Western Sahara, Yemen, 
Algeria, Iran, Iraq, Jordan, Lebanon, Libya, Tunisia 

EAS (East Asia): South Korea, Korea (Democratic People’s Republic 
of), Mongolia, China 

SAS (South Asia): British Indian Ocean Territory, Afghanistan, Bangla-
desh, Nepal, Bhutan, India, Pakistan, Sri Lanka, Maldives 

PAS (South-East Asia and Pacific): Brunei Darussalam, Christmas 
Island, Cocos (Keeling) Islands, French Polynesia, Heard Island and 
McDonald Islands, New Caledonia, Norfolk Island, Northern Mariana 
Islands, Pitcairn, Singapore, Tokelau, US Minor Outlying Islands, Wal-
lis and Futuna, Cambodia, Myanmar, Indonesia, Kiribati, Laos (People’s 
Democratic Republic), Micronesia (Federated States of), Nauru, Papua 

New Guinea, Philippines, Samoa, Solomon Islands, Timor-Leste, Vanu-
atu, Viet Nam, Niue, American Samoa, Cook Islands, Fiji, Malaysia, Mar-
shall Islands, Palau, Thailand, Tonga, Tuvalu 

INT TRA (International transport): International Aviation, Interna-
tional Shipping

A.II.2.2	 RC5

For country mapping to each of the RC5 regions see RC10 mappings 
(Section A.II.2.1) and their aggregation to RC5 regions in Table A.II.8. 
It should be noted that this region set was also used in the so-called 
Representative Concentration Pathways (RCPs, see Section 6.3.2) and 
therefore has been adopted as a standard in integrated modelling sce-
narios (Section A.II.10).

A.II.2.3	 ECON4

High Income (HIC): Aland Islands, Andorra, Anguilla, Antarctica, Anti-
gua and Barbuda, Aruba, Australia, Austria, Bahamas, Bahrain, Barba-
dos, Belgium, Bermuda, Bouvet Island, British Indian Ocean Territory, 
British Virgin Islands, Brunei Darussalam, Canada, Cayman Islands, 
Channel Islands, Chile, Christmas Island, Cocos (Keeling) Islands, Croa-
tia, Curacao, Cyprus, Czech Republic, Denmark, Equatorial Guinea, 
Estonia, Falkland Islands (Malvinas), Faroe Islands, Finland, France, 
French Guiana, French Polynesia, French Southern Territories, Germany, 
Gibraltar, Greece, Greenland, Guadeloupe, Guam, Guernsey, Heard 
Island and McDonald Islands, Holy See (Vatican City State), Iceland, 
Ireland, Isle of Man, Israel, Italy, Japan, Jersey, Kuwait, Latvia, Liech-
tenstein, Lithuania, Luxembourg, Malta, Martinique, Mayotte, Monaco, 
Montserrat, Netherlands, Netherlands Antilles, New Caledonia, New 
Zealand, Norfolk Island, Northern Mariana Islands, Norway, Oman, 
Pitcairn, Poland, Portugal, Puerto Rico, Qatar, Reunion, Russian Fed-
eration, Saint Helena, Saint Kitts and Nevis, Saint Pierre and Miquelon, 
San Marino, Saudi Arabia, Singapore, Sint Maarten, Slovakia, Slovenia, 
South Georgia and the South Sandwich Islands, South Korea, Spain, 
Svalbard and Jan Mayen, Sweden, Switzerland, Tokelau, Trinidad and 
Tobago, Turks and Caicos Islands, United Arab Emirates, United King-
dom, United States, Uruguay, US Minor Outlying Islands, US Virgin 
Islands, Wallis and Futuna

Upper Middle Income (UMC): Albania, Algeria, American Samoa, 
Angola, Argentina, Azerbaijan, Belarus, Belize, Bosnia and Herze-
govina, Botswana, Brazil, Bulgaria, China, Colombia, Cook Islands, 
Costa Rica, Cuba, Dominica, Dominican Republic, Ecuador, Fiji, Gabon, 
Grenada, Hungary, Iran, Iraq, Jamaica, Jordan, Kazakhstan, Lebanon, 
Libya, Macedonia, Malaysia, Maldives, Marshall Islands, Mauritius, 
Mexico, Montenegro, Namibia, Niue, Palau, Panama, Peru, Romania, 
Saint Lucia, Saint Vincent and the Grenadines, Serbia, Serbia and Mon-
tenegro, Seychelles, South Africa, Suriname, Thailand, Tonga, Tunisia, 
Turkey, Turkmenistan, Tuvalu, Venezuela 
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Lower Middle Income (LMC): Armenia, Bhutan, Bolivia, Cameroon, 
Cape Verde, Congo, Cote d’Ivoire, Djibouti, Egypt, El Salvador, Georgia, 
Ghana, Guatemala, Guyana, Honduras, India, Indonesia, Kiribati, Laos 
(People’s Democratic Republic), Lesotho, Mauritania, Micronesia (Fed-
erated States of), Moldova (Republic of), Mongolia, Morocco, Nauru, 
Nicaragua, Nigeria, Pakistan, Palestine, Papua New Guinea, Paraguay, 
Philippines, Samoa, Sao Tome and Principe, Senegal, Solomon Islands, 
South Sudan, Sri Lanka, Sudan, Swaziland, Syrian Arab Republic, Timor-
Leste, Ukraine, Uzbekistan, Vanuatu, Viet Nam, Western Sahara, Yemen, 
Zambia

Low Income (LIC): Afghanistan, Bangladesh, Benin, Burkina Faso, 
Burundi, Cambodia, Central African Republic, Chad, Comoros, Congo 
(The Democratic Republic of the), Eritrea, Ethiopia, Gambia, Guinea, 
Guinea-Bissau, Haiti, Kenya, Korea (Democratic People’s Republic of), 
Kyrgyzstan, Liberia, Madagascar, Malawi, Mali, Mozambique, Myan-
mar, Nepal, Niger, Rwanda, Sierra Leone, Somalia, Tajikistan, Tanzania, 
Togo, Uganda, Zimbabwe

INT TRA (International transport): International Aviation, Interna-
tional Shipping

A.II.2.4	 GEA R11

The 11 regions of GEA R11 are similar to the above RC10 and consist 
of North America (NAM), Western Europe (WEU), Pacific OECD (POECD 
[PAO]), Central and Eastern Europe (EEU), Former Soviet Union (FSU), 
Centrally Planned Asia and China (CPA), South Asia (SAS), Other Pacific 
Asia (PAS), Middle East and North Africa (MNA [MEA]), Latin America 
and the Caribbean (LAM [LAC]) and Sub-Saharan Africa (SSA [AFR]). 
The differences to RC10 are the following:

•	 RC10 EIT is split in GEA R11 FSU and EEU. To FSU belong Arme-
nia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Republic 
of Moldova, Russian Federation, Tajikistan, Turkmenistan, Ukraine 
and Uzbekistan and to EEU belong Albania, Bosnia and Herze-
govina, Bulgaria, Croatia, Czech Republic, Estonia, Macedonia, 
Hungary, Latvia, Lithuania, Montenegro, Poland, Romania, Serbia, 
Slovak Republic and Slovenia.

•	 GEA R11 NAM matches RC10 NAM plus Puerto Rico and the Brit-
ish Virgin Islands.

•	 GEA R11 LAM matches RC10 LAM without Puerto Rico and the 
British Virgin Islands.

•	 GEA R11 CPA matches RC10 EAS plus Cambodia, Laos (People’s 
Democratic Republic), Viet Nam, without South Korea. 

•	 GEA R11 PAS matches RC10 PAS plus South Korea and Taiwan, 
Province of China, without Cambodia, Laos (People’s Democratic 
Republic), Viet Nam.

Part II:	 Methods

A.II.3	 Costs metrics

Across this report, a number of different metrics to characterize cost of 
climate change mitigation are employed. These cost metrics reflect the 
different levels of detail and system boundaries at which mitigation 
analysis is conducted. For example, in response to mitigation policies, 
different technologies are deployed across different sectors. To facili-
tate a meaningful comparison of economics across diverse options at 
the technology level, the metric of ‘levelized costs’ is used throughout 
several chapters (7, 8, 9, 10, and 11) of this report in various forms 
(Section A.II.3.1). In holistic approaches to mitigation, such as the ones 
used in Chapter 6 on transformation pathways, different mitigation 
cost metrics are used, the differences among which are discussed in 
Section A.II.3.2.

A.II.3.1	 Levelized costs

Levelizing costs means to express all lifetime expenditures of a stream 
of relatively homogeneous outputs that occur over time as cost per 
unit of output. Most commonly, the concept is applied to electricity as 
an output. It is also being applied to express costs of other streams of 
outputs such as energy savings and greenhouse gas (GHG) emission 
savings. Each of these metrics provides a benchmark for comparing 
different technologies or practices of providing the respective output. 
Each also comes with a set of context-specific caveats that need to be 
taken into account for correct interpretation. Various literature sources 
caution against drawing too strong conclusions from these metrics. The 
levelized cost of energy (LCOE), the levelized cost of conserved energy 
(LCCE), and the levelized cost of conserved carbon (LCCC) are used 
throughout the WGIII AR5 to provide output-specific benchmarks for 
comparison. They are explained and discussed below in the mentioned 
order.1

A.II.3.1.1	 Levelized cost of energy

Background
In order to compare energy supply technologies from an economic 
point of view, the concept of ‘levelized cost of energy’ (LCOE, also 
called levelized unit cost or levelized generation cost) frequently is 
applied (IEA and NEA, 2005; IEA, 2010a; Fischedick et al., 2011; Lar-

1	 This section, however, does not take into account the implications for additional 
objectives beyond energy supply (LCOE), energy savings (LCCE) or mitigation 
(LCCC) — often referred to as co-benefits and adverse side-effects (see Glossary 
in Annex I). In particular, external costs are not taken into account if they are not 
internalized (e. g., via carbon pricing). 
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son et  al., 2012; Turkenburg et  al., 2012; UNEP, 2012; IRENA, 2013). 
Simply put, ‘levelized’ cost of energy is a measure that can be loosely 
defined as the long-run ‘average’ cost of a unit of energy provided by 
the considered technology (albeit, calculated correctly in an economic 
sense by taking into account the time value of money). Strictly speak-
ing, the levelized cost of energy is “the cost per unit of energy that, if 
held constant through the analysis period, would provide the same net 
present revenue value as the net present value cost of the system.” 
(Short et al., 1995, p. 93). The calculation of the respective ‘average’ 
cost (expressed, for instance in US cent / kWh or USD / GJ) palpably facil-
itates the comparison of projects, which differ in terms of plant size 
and / or plant lifetime.

General formula and simplifications
According to the definition given above, “the levelized cost is the 
unique break-even cost price where discounted revenues (price x 
quantities) are equal to the discounted net expenses” (Moomaw et al., 
2011): 

​∑ 
t = 0

​ 
n

  ​​ 
​E​t​ · LCOE

 ___ 
(1 + i​)​t​

 ​​  := ​∑ 
t = 0

​ 
n

  ​​ 
​Expenses​t​ ___ 

(1 + i​)​t​
 ​​ � (Equation A.II.1)

where LCOE are the levelized cost of energy, Et is the energy delivered 
in year t (which might vary from year to year), Expensest cover all (net) 
expenses in the year t, i is the discount rate and n the lifetime of the 
project. 

After solving for LCOE this gives: 

LCOE := ​ 
​∑ 
t = 0

​ 
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  ​​ 
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 ​​
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​∑ 
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​ 
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  ​
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​E​t​ __ 
(1 + i​)​t​

 ​​ 
 ​�  (Equation A.II.2)

Note that while it appears as if energy amounts were discounted in 
Equation A.II.2, this is just an arithmetic result of rearranging Equation 
A.II.1 (Branker et al., 2011). In fact, originally, revenues are discounted 
and not energy amounts per se (see Equation A.II.1). 

Considering energy conversion technologies, the lifetime expenses 
comprise investment costs I, operation and maintenance cost O&M 
(including waste management costs), fuel costs F, carbon costs C, and 
decommissioning costs D. In this case, levelized cost can be deter-
mined by (IEA, 2010a): 

LCOE := ​ 
​∑ 
t = 0

​ 
n

  ​​ 
​I​t​ + O&​M​t​ + ​F​t​ + ​C​t​ + ​D​t​  _______  

(1 + i​)​t​
 ​​

  _______  
​∑ 
t = 0

​ 
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  ​​ 
​E​t​ __ 

(1 +​ i)​t​
 ​​
 ​�  (Equation A.II.3)

In simple cases, where the energy E provided annually is constant dur-
ing the lifetime of the project, this translates to:

LCOE �:= ​ 
CRF · NPV (Lifetime Expenses)

   ________  
E
 ​  = ​ 

Annuity (Lifetime Expenses)
  ________  

E
 ​

� (Equation A.II.4)

where CRF: = ​  i ___ 1 − (1 + i​)​−n​ ​ is the capital recovery factor and NPV the net 
present value of all lifetime expenditures (Suerkemper et al., 2011). For 
the simplified case, where the annual costs are also assumed constant 
over time, this can be further simplified to (O&M costs and fuel costs 
F constants):

LCOE =  ​  CRF · I + O&M + F  _____ 
​E​  ​

 ​ � (Equation A.II.5)

Where I is the upfront investment, O&M are the annual operation and 
maintenance costs, F are the annual fuel costs, and E is the annual 
energy provision. The investment I should be interpreted (here and also 
in Equations A.II.7 and A.II.9) as the sum of all capital expenditures 
needed to make the investment fully operational discounted to t = 0. 
These might include discounted payments for retrofit payments dur-
ing the lifetime and discounted decommissioning costs at the end of 
the lifetime. Where applicable, annual O&M costs have to take into 
account revenues for by-products and existing carbon costs must be 
added or treated as part of the annual fuel costs.

Discussion of LCOE
The LCOE of a technology is only one indicator for its economic com-
petitiveness, but there are more dimensions to it. Integration costs, 
time dependent revenue opportunities (especially in the case of inter-
mittent renewables), and relative environmental impacts (e. g., exter-
nal costs) play an important role as well (Heptonstall, 2007; Fischedick 
et al., 2011; Joskow, 2011a; Borenstein, 2012; Mills and Wiser, 2012; 
Edenhofer et  al., 2013a; Hirth, 2013). Joskow (2011b) for instance, 
pointed out that LCOE comparisons of intermittent generating tech-
nologies (such as solar energy converters and wind turbines) with dis-
patchable power plants (e. g., coal or gas power plants) may be mis-
leading as these comparisons fail to take into account the different 
production schedule and the associated differences in the market value 
of the electricity that is provided. An extended criticism of the concept 
of LCOE as applied to renewable energies is provided by (Edenhofer 
et al., 2013b). 

Taking these shortcomings into account, there seems to be a clear 
understanding that LCOE are not intended to be a definitive guide 
to actual electricity generation investment decisions (IEA and NEA, 
2005; DTI, 2006). Some studies suggest that the role of levelized 
costs is to give a ‘first order assessment’ (EERE, 2004) of project 
viability. 

In order to capture the existing uncertainty, sensitivity analyses, which 
are sometimes based on Monte Carlo methods, are frequently carried 
out in numerical studies. Darling et  al. (2011), for instance, suggest 
that transparency could be improved by calculating LCOE as a distri-
bution, constructed using input parameter distributions, rather than a 
single number. Studies based on empirical data, in contrast, may suffer 
from using samples that do not cover all cases. Summarizing country 
studies in an effort to provide a global assessment, for instance, might 
have a bias as data for developing countries often are not available 
(IEA, 2010a).
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As Section 7.8.2 shows, typical LCOE ranges are broad as values vary 
across the globe depending on the site-specific renewable energy 
resource base, on local fuel and feedstock prices as well as on coun-
try specific projected costs of investment, and operation and main-
tenance. While noting that system and installation costs vary widely, 
Branker et  al. (2011) document significant variations in the underly-
ing assumptions that go into calculating LCOE for photovoltaic (PV), 
with many analysts not taking into account recent cost reductions or 
the associated technological advancements. In summary, a compari-
son between different technologies should not be based on LCOE data 
solely; instead, site-, project- and investor specific conditions should be 
considered (Fischedick et al., 2011). 

A.II.3.1.2	 Levelized cost of conserved energy

Background
The concept of ‘levelized cost of conserved energy’ (LCCE), or more 
frequently referred to as ‘cost of conserved energy (CCE)’, is very 
similar to the LCOE concept, primarily intended to be used for com-
paring the cost of a unit of energy saved to the purchasing cost 
per unit of energy. In essence the concept, similarly to LCOE, also 
annualizes the investment and operation and maintenance cost dif-
ferences between a baseline technology and the energy-efficiency 
alternative, and divides this quantity by the annual energy savings 
(Brown et al., 2008). Similarly to LCOE, it also bridges the time lag 
between the initial additional investment and the future energy sav-
ings through the application of the capital recovery factor (Meier, 
1983).

General formula and simplifications
The conceptual formula for LCCE is essentially the same as Equation 
A.II.4 above, with ΔE meaning in this context the amount of energy 
saved annually (Suerkemper et al., 2011):

LCCE �:= ​ 
CRF · NPV(ΔLifetime ​Expenses)

   ________  
ΔE

 ​  = ​ 
Annuity (ΔLifetime Expenses)

   ________  
ΔE

 ​

� (Equation A.II.6)

In the case of assumed annually constant O&M costs over the lifetime, 
this simplifies to (equivalent to Equation A.II.5) (Hansen, 2012):

LCCE =  ​  CRF · ΔI + ΔO&M  _____ 
ΔE

 ​�  (Equation A.II.7)

Where ΔI is the difference in investment costs of an energy saving 
measure (e. g., in USD) as compared to a baseline investment; ΔO&M 
is the difference in annual operation and maintenance costs of an 
energy saving measure (e. g., in USD) as compared to the baseline in 
which the energy saving measure is not implemented; ΔE is the annual 
energy conserved by the measure (e. g., in kWh) as compared to the 
usage of the baseline technology; and CRF is the capital recovery fac-

tor depending on the discount rate i and the lifetime of the measure 
n in years as defined above. It should be stressed once more that this 
equation is only valid if ΔO&M and ΔE are constant over the lifetime. 
As LCCE are designed to be compared with complementary levelized 
cost of energy supply, they do not include the annual fuel cost differ-
ence. Any additional monetary benefits that are associated with the 
energy saving measure must be taken into account as part of the O&M 
difference. 

Discussion of LCCE
The main strength of the LCCE concept is that it provides a metric of 
energy saving investments that are independent of the energy price, 
and can thus be compared to different energy purchasing cost values 
for determining the profitability of the investment (Suerkemper et al., 
2011). 

The key difference in the concept with LCOE is the usage of a refer-
ence / baseline technology. LCCE can only be interpreted in context of 
a reference, and is thus very sensitive to how this reference is cho-
sen (see Section 9.3 and 9.6). For instance, the replacement of a very 
inefficient refrigerator can be very cost-effective, but if we consider an 
already relatively efficient product as the reference technology, the 
LCCE value can be many times higher. This is one of the main chal-
lenges in interpreting LCCE. 

Another challenge in the calculation of LCCE should be pinpointed. The 
lifetimes of the efficient and the reference technology may be different. 
In this case the investment cost difference needs to be used that incurs 
throughout the lifetime of the longer-living technology. For instance, 
a compact fluorescent lamp (CFL) lasts as much as 10 times as long 
as an incandescent lamp. Thus, in the calculation of the LCCE for a 
CFL replacing an incandescent lamp the saved investments in multi-
ple incandescent lamps should be taken into account (Ürge-Vorsatz, 
1996). In such a case, as in some other cases, too, the difference in 
annualized investment cost can be negative resulting in negative LCCE 
values. Negative LCCE values mean that the investment is already prof-
itable at the investment level, without the need for the energy savings 
to recover the extra investment costs. 

Taking into account incremental operation and maintenance cost 
can be important for applications where those are significant, for 
instance, the lamp replacement on streetlamps, bridges. In such 
cases a longer-lifetime product, as it typically applies to efficient 
lighting technologies, is already associated with negative costs at 
the investment level (less frequent needs for labour to replace the 
lamps), and thus can result in significantly negative LCCEs or cost 
savings (Ürge-Vorsatz, 1996). In case of such negative incremental 
investment cost, some peculiarities may occur. For instance, as can 
be seen from Equation A.II.7, LCCE decrease (become more nega-
tive) with increasing CRF, e. g., as a result of an increase in discount 
rates. 
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A.II.3.1.3	 Levelized cost of conserved carbon

Background
Many find it useful to have a simple metric for identifying the costs of 
GHG emission mitigation. The metric can be used for comparing miti-
gation costs per unit of avoided emissions, and comparing these spe-
cific emission reduction costs for different options, within a company, 
within a sector, or even between sectors. This metric is often referred 
to as levelized cost of conserved carbon (LCCC) or specific GHG mitiga-
tion costs. There are several caveats, which will be discussed below, 
after the general approach is introduced.

General formula and simplification
For calculation of specific mitigation costs, the following, equation 
holds, where ΔC is the annual reduction in GHG emissions achieved 
through the implementation of an option. The equation is equivalent to 
Equations A.II.4 and A.II.6. 

LCCC �:= ​ 
CRF · NPV(ΔLifetime​Expenses)

   ________  
ΔC

 ​  = ​ 
Annuity(ΔLifetimeExpenses)

   ________  
ΔC

 ​

� (Equation A.II.8)

Also this equation can be simplified under the assumption of annual 
GHG emission reduction, annual O&M costs and annual benefits ΔB 
being constant over the lifetime of the option.

LCCC =  ​  CRF · ΔI + ΔO&M − ΔB  _______ 
ΔC

 ​�  (Equation A.II.9)

Where ΔI is the difference in investment costs of a mitigation measure 
(e. g., in USD) as compared to a baseline investment; ΔO&M is the dif-
ference in annual operation and maintenance costs (e. g., in USD) and 
ΔB denotes the annual benefits, all compared to a baseline for which 
the option is not implemented. Note that annual benefits include 
reduced expenditures for fuels, if the investment project reduces GHG 
emissions via a reduction in fuel use. As such LCCC depend on energy 
prices.

An important characteristic of this equation is that LCCC can become 
negative if ΔB is bigger than the sum of the other two terms in the 
numerator. 

Discussion of LCCC
Several issues need to be taken into account when using LCCC. First of 
all, the calculation of LCCC for one specific option does not take into 
account the fact that each option is implemented in a system, and the 
value of the LCCC of one option will depend on whether other options 
will be implemented or not (e. g., because the latter might influence 
the specific emissions of the background system). To solve this issue, 
analysts use integrated models, in which ideally these interactions are 
taken into account (see Chapter 6). Second, energy prices and other 
benefits are highly variable from region to region, rarely constant over 
time, and often difficult to predict. This issue is relevant for any analysis 
on mitigation, but it is always important to be aware of the fact that 

even if one single LCCC number is reported, there will be substantial 
uncertainty in that number. Uncertainty tends to increase from LCOE 
to LCCE, for example, due to additional uncertainty with regard to 
the choice of the baseline, and even further for LCCC, since not only 
a baseline needs to be defined, but furthermore the monetary benefit 
from energy savings needs to be taken into account (if the mitigation 
measure affects energy consumption). Moving from LCOE to LCCC in 
the field of energy supply technologies, for instance, results in compar-
ing LCOE differences to the differences of the specific emissions of the 
mitigation technology compared to the reference plant (Rubin, 2012). 
As Sections 7.8.1 and 7.8.2 have shown, LCOE and specific emissions 
exhibit large uncertainties in their own, which result in an even exag-
gerated uncertainty once combined to yield the LCCC. Third, options 
with negative costs can occur, for example, in cases where incremental 
investment cost are taken to be negative. Finally, there is also a debate 
whether options with negative costs can occur at all, as it apparently 
suggests a situation of non-optimized behaviour. For further discussion 
of negative costs, see Box 3.10 in Chapter 3 of this report.

Levelized costs of conserved carbon are used to determine abatement 
cost curves, which are frequently applied in climate change decision 
making. The merits and shortcoming of abatement cost curves are 
discussed in the IPCC Special Report on Renewable Energy Sources 
and Climate Change Mitigation (SRREN) (Fischedick et  al., 2011) 
and in Chapter 3 (Section 3.9.3) of the AR5. In order to avoid some 
of the shortcomings of abatement cost curves, the AR5 opted to use 
integrated modelling scenarios in order to evaluate the economic 
potential of specific mitigation options in a consistent way. Integrated 
models are able to determine the economic potential of single mitiga-
tion options within the context of (other) competing supply-side and 
demand-side options by taking their interaction and potential endog-
enous learning effects into account. The results obtained in this way 
are discussed in Chapter 6.

A.II.3.2	 Mitigation cost metrics

There is no single metric for reporting the costs of mitigation, and the 
metrics that are available are not directly comparable (see Section 
3.9.3 for a more general discussion; see Section 6.3.6 for an overview 
of costs used in model analysis). In economic theory the most direct 
cost measure is a change in welfare due to changes in the amount 
and composition of consumption of goods and services by individu-
als. Important measures of welfare change include ‘equivalent varia-
tion’ and ‘compensating variation’, which attempt to discern how 
much individual income would need to change to keep consumers just 
as well off after the imposition of a policy as before. However, these 
are quite difficult to calculate, so a more common welfare measure-
ment is change in consumption, which captures the total amount of 
money consumers are able to spend on goods and services. Another 
common metric is the change in gross domestic product (GDP). How-
ever, GDP is a less satisfactory measure of overall mitigation cost than 
those focused on individual income and consumption, because it is an 
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output-related measure that in addition to consumption also includes 
investment, imports and exports, and government spending. Aggre-
gate consumption and GDP losses are only available from an analysis 
of the policy impact on the full economy. Common cost measures used 
in studies of the policy impact on specific economic sectors, such as the 
energy sector, are the reduction in consumer and producer surplus and 
the ‘area under the marginal abatement cost function’.

From a practical perspective, different modelling frameworks applied 
in mitigation analysis are capable of producing different cost estimates 
(Section 6.2). Therefore, when comparing cost estimates across mitiga-
tion scenarios from different models, some degree of incomparability 
must necessarily result. In representing costs across transformation 
pathways in this report and more specifically Chapter 6, consumption 
losses are used preferentially when available from general equilibrium 
models, and costs represented by the area under the marginal abate-
ment cost function or the reduction of consumer and producer surplus 
are used for partial equilibrium models. Costs are generally measured 
relative to a baseline scenario without mitigation policy. Consumption 
losses can be expressed in terms of, inter alia, the reduction of baseline 
consumption in a given year or the annual average reduction of con-
sumption growth in the baseline over a given time period.

One popular measure used in different studies to evaluate the eco-
nomic implications of mitigation actions is the emissions price, often 
presented in per tonne of CO2 or per tonne of CO2-equivalent (CO2eq). 
However, it is important to emphasize that emissions prices are not 
cost measures. There are two important reasons why emissions prices 
are not a meaningful representation of costs. First, emissions prices 
measure marginal cost, i. e., the cost of an incremental reduction of 
emissions by one unit. In contrast, total costs represent the costs of all 
mitigation that took place at lower cost than the emissions price. With-
out explicitly accounting for these ‘inframarginal’ costs, it is impossible 
to know how the carbon price relates to total mitigation costs. Sec-
ond, emissions prices can interact with other existing or new policies 
and measures, such as regulatory policies that aim at reducing GHG 
emissions (e. g., feed-in tariffs, subsidies to low-carbon technologies, 
renewable portfolio standards) or other taxes on energy, labour, or 
capital. If mitigation is achieved partly by these other measures, the 
emissions price will not take into account the full costs of an additional 
unit of emissions reductions, and will indicate a lower marginal cost 
than is actually warranted.

It is important to calculate the total cost of mitigation over the entire 
lifetime of a policy. The application of discounting is common practice 
in economics when comparing costs over time. In Chapter 3, Section 
3.6.2 provides some theoretical background on the choice of discount 
rates in the context of cost-benefit analysis (CBA), where discounting 
is crucial, because potential climate damages, and thus benefits from 
their avoidance, will occur far in the future, are highly uncertain, and 
are often in the form of non-market goods. In Chapter 6, mitigation 
costs are assessed primarily in the context of cost-effectiveness analy-
sis, in which a target for the long-term climate outcome is specified 

and models are used to estimate the cost of reaching it, under a variety 
of constraints and assumptions (Section 6.3.2). These scenarios do not 
involve the valuation of damages and the difficulties arising from their 
aggregation. Nonetheless, the models surveyed in Chapter 6 consider 
transformation pathways over long time horizons, so they must specify 
how decision makers view intertemporal tradeoffs.

The standard approach is to use a discount rate that approximates 
the interest rate, that is, the marginal productivity of capital. Empiri-
cal estimates of the long-run average return to a diversified portfolio 
are typically in the 4 % – 6 % range. In scenarios where the long-term 
target is set, the discounting approach will have an effect only on the 
speed and shape of the mitigation schedule, not on the overall level of 
stringency (note that this is in sharp contrast to cost-benefit analysis, 
where the discounting approach is a strong determinant of the level of 
stringency). Although a systematic comparison of alternative discount-
ing approaches in a cost-effectiveness setting does not exist in the 
literature, we can make the qualitative inference that when a policy-
maker places more (less) weight on the future, mitigation effort will be 
shifted sooner (later) in time. Because of long-lived capital dynamics 
in the energy system, and also because of expected technical change, 
mitigation effort in a cost-effectiveness analysis typically begins gradu-
ally and increases over time, leading to a rising cost profile. Thus, an 
analogous inference can be made that when a policy-maker places 
more (less) weight on the future, mitigation costs will be higher (lower) 
earlier and lower (higher) later.

Estimates of the macroeconomic cost of mitigation usually represent 
direct mitigation costs and do not take into account co-benefits or 
adverse side-effects of mitigation actions (see red arrows in Figure 
A.II.1). Further, these costs are only those of mitigation; they do not 
capture the benefits of reducing CO2eq concentrations and limiting cli-
mate change. 

Two further concepts are introduced in Chapter 6 to classify cost 
estimates (Section 6.3.6). The first is an idealized implementation 
approach in which a ubiquitous price on carbon and other GHGs is 
applied across the globe in every sector of every country and which 
rises over time at a rate that reflects the increase in the cost of the 
next available unit of emissions reduction. The second is an idealized 
implementation environment of efficient global markets in which there 
are no pre-existing distortions or interactions with other, non-climate 
market failures. An idealized implementation approach minimizes miti-
gation costs in an idealized implementation environment. This is not 
necessarily the case in non-idealized environments in which climate 
policies interact with existing distortions in labour, energy, capital, and 
land markets. If those market distortions persist or are aggravated by 
climate policy, mitigation costs tend to be higher. In turn, if climate 
policy is brought to bear on reducing such distortions, mitigation costs 
can be lowered by what has been frequently called a double dividend 
of climate policy (see blue arrows in Figure A.II.1). Whether or not such 
a double dividend is available will depend on assumptions about the 
policy environment and available climate policies. 



12931293

Metrics & MethodologyAnnex II

AII

A.II.4	 Primary energy accounting

Following the standard set by the SRREN, this report adopts the direct-
equivalent accounting method for the reporting of primary energy 
from non-combustible energy sources. The following section largely 
reproduces Annex A.II.4 of the SRREN (Moomaw et  al., 2011) with 
some updates and further clarifications added.

Different energy analyses use a variety of accounting methods that 
lead to different quantitative outcomes for both reporting of current 
primary energy use and primary energy use in scenarios that explore 
future energy transitions. Multiple definitions, methodologies, and 
metrics are applied. Energy accounting systems are utilized in the liter-
ature often without a clear statement as to which system is being used 
(Lightfoot, 2007; Martinot et al., 2007). An overview of differences in 
primary energy accounting from different statistics has been described 

by Macknick (2011) and the implications of applying different account-
ing systems in long-term scenario analysis were illustrated by Naki-
cenovic et al., (1998), Moomaw et al. (2011) and Grubler et al. (2012).

Three alternative methods are predominantly used to report primary 
energy. While the accounting of combustible sources, including all fos-
sil energy forms and biomass, is identical across the different methods, 
they feature different conventions on how to calculate primary energy 
supplied by non-combustible energy sources, i. e., nuclear energy and 
all renewable energy sources except biomass. These methods are:

•	 the physical energy content method adopted, for example, by 
the OECD, the International Energy Agency (IEA) and Eurostat 
(IEA / OECD / Eurostat, 2005);

•	 the substitution method, which is used in slightly different variants 
by BP (2012) and the U. S. Energy Information Administration (EIA, 
2012a, b, Table A6), both of which publish international energy sta-
tistics; and

Figure A.II.1 | Modelled policy costs in a broader context. The plotted range summarizes costs expressed as percentage loss relative to baseline across models for cost-effective 
scenarios reaching 430 – 530 ppm CO2eq. Scenarios were sorted by total NPV costs for each available metric (loss in GDP, loss in consumption, area under marginal abatement cost 
curve as a fraction of GDP). The lower boundary of the plotted range reflects the minimum across metrics of the 25th percentile, while the upper boundary reflects the maximum 
across metrics of the 75th percentile. A comprehensive treatment of costs and cost metrics, including the effects of non-idealized scenario assumptions, is provided in Section 6.3.6. 
Other arrows and annotations indicate the potential effects of considerations outside of those included in models. Source: WGIII AR5 Scenario Database. 
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•	 the direct equivalent method that is used by UN Statistics (2010) 

and in multiple IPCC reports that deal with long-term energy and 
emission scenarios (Nakicenovic and Swart, 2000; Morita et  al., 
2001; Fisher et al., 2007; Fischedick et al., 2011). 

For non-combustible energy sources, the physical energy content 
method adopts the principle that the primary energy form should be 
the first energy form used down-stream in the production process for 
which multiple energy uses are practical (IEA / OECD / Eurostat, 2005). 
This leads to the choice of the following primary energy forms:

•	 heat for nuclear, geothermal, and solar thermal, and
•	 electricity for hydro, wind, tide / wave / ocean, and solar PV.

Using this method, the primary energy equivalent of hydro energy and 
solar PV, for example, assumes a 100 % conversion efficiency to ‘pri-
mary electricity’, so that the gross energy input for the source is 3.6 MJ 
of primary energy = 1 kWh of electricity. Nuclear energy is calculated 
from the gross generation by assuming a 33 % thermal conversion effi-
ciency2, i. e., 1 kWh = (3.6 ÷ 0.33) = 10.9 MJ. For geothermal, if no 
country-specific information is available, the primary energy equivalent 
is calculated using 10 % conversion efficiency for geothermal electric-
ity (so 1 kWh = (3.6 ÷ 0.1) = 36 MJ), and 50 % for geothermal heat.

The substitution method reports primary energy from non-combustible 
sources in such a way as if they had been substituted for combusti-
ble energy. Note, however, that different variants of the substitution 
method use somewhat different conversion factors. For example, BP 

2	 As the amount of heat produced in nuclear reactors is not always known, the IEA 
estimates the primary energy equivalent from the electricity generation by assum-
ing an efficiency of 33 %, which is the average of nuclear power plants in Europe 
(IEA, 2012b).

applies 38 % conversion efficiency to electricity generated from nuclear 
and hydro whereas the World Energy Council used 38.6 % for nuclear 
and non-combustible renewables (WEC, 1993; Grübler et  al., 1996; 
Nakicenovic et  al., 1998), and the U. S. Energy Information Adminis-
tration (EIA) uses still different values. For useful heat generated from 
non-combustible energy sources, other conversion efficiencies are 
used. Macknick (2011) provides a more complete overview.

The direct equivalent method counts one unit of secondary energy pro-
vided from non-combustible sources as one unit of primary energy, i. e., 
1 kWh of electricity or heat is accounted for as 1 kWh = 3.6 MJ of 
primary energy. This method is mostly used in the long-term scenarios 
literature, including multiple IPCC reports (IPCC, 1995b; Nakicenovic 
and Swart, 2000; Morita et  al., 2001; Fisher et  al., 2007; Fischedick 
et al., 2011), because it deals with fundamental transitions of energy 
systems that rely to a large extent on low-carbon, non-combustible 
energy sources.

The accounting of combustible sources, including all fossil energy 
forms and biomass, includes some ambiguities related to the defi-
nition of the heating value of combustible fuels. The higher heating 
value (HHV), also known as gross calorific value (GCV) or higher calo-
rific value (HCV), includes the latent heat of vaporization of the water 
produced during combustion of the fuel. In contrast, the lower heat-
ing value (LHV) (also: net calorific value (NCV) or lower calorific value 
(LCV)) excludes this latent heat of vaporization. For coal and oil, the 
LHV is about 5 % smaller than the HHV, for natural gas and derived 
gases the difference is roughly 9 – 10 %, while the concept does not 
apply to non-combustible energy carriers such as electricity and heat 
for which LHV and HHV are therefore identical (IEA, 2012a). 

In the WGIII AR5, IEA data are utilized, but energy supply is reported 
using the direct equivalent method. In addition, the reporting of com-

Table A.II.10 | Comparison of global total primary energy supply in 2010 using different primary energy accounting methods (data from IEA 2012b).

Physical content method Direct equivalent method Substitution method*

EJ % EJ % EJ %

Fossil fuels 432.99 81.32 432.99 84.88 432.99 78.83

Nuclear 30.10 5.65 9.95 1.95 26.14 4.76

Renewables 69.28 13.01 67.12 13.16 90.08 16.40

Bioenergy 52.21 9.81 52.21 10.24 52.21 9.51

Solar 0.75 0.14 0.73 0.14 1.03 0.19

Geothermal 2.71 0.51 0.57 0.11 1.02 0.19

Hydro 12.38 2.32 12.38 2.43 32.57 5.93

Ocean 0.002 0.0004 0.002 0.0004 0.005 0.001

Wind 1.23 0.23 1.23 0.24 3.24 0.59

Other 0.07 0.01 0.07 0.01 0.07 0.01

Total 532.44 100.00 510.13 100.00 549.29 100.00

*	 For the substitution method, conversion efficiencies of 38 % for electricity and 85 % for heat from non-combustible sources were used. The value of 38 % is used by BP for 
electricity generated from hydro and nuclear. BP does not report solar, wind, and geothermal in its statistics for which, here, also 38 % is used for electricity and 85 % for 
heat.
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bustible energy quantities, including primary energy, should use the 
LHV which is consistent with the IEA energy balances (IEA, 2012a; b). 
Table A.II.10 compares the amounts of global primary energy by source 
and percentages using the physical energy content, the direct equiva-
lent and a variant of the substitution method for the year 2010 based 
on IEA data (IEA, 2012b). In current statistical energy data, the main 
differences in absolute terms appear when comparing nuclear and 
hydro power. As they both produced comparable amounts of electricity 
in 2010, under both direct equivalent and substitution methods, their 
share of meeting total final consumption is similar, whereas under the 
physical energy content method, nuclear is reported at about three 
times the primary energy of hydro.

The alternative methods outlined above emphasize different aspects 
of primary energy supply. Therefore, depending on the application, 
one method may be more appropriate than another. However, none 
of them is superior to the others in all facets. In addition, it is impor-
tant to realize that total primary energy supply does not fully describe 
an energy system, but is merely one indicator amongst many. Energy 
balances as published by IEA (2012a; b) offer a much wider set of 
indicators which allows tracing the flow of energy from the resource 
to final energy use. For instance, complementing total primary energy 
consumption by other indicators, such as total final energy consump-
tion and secondary energy production (e. g., of electricity, heat), using 
different sources helps link the conversion processes with the final use 
of energy.

A.II.5	 Indirect primary energy 
use and CO2 emissions

Energy statistics in most countries of the world and at the International 
Energy Agency (IEA) display energy use and carbon dioxide (CO2) emis-
sions from fuel combustion directly in the energy sectors. As a result, 
the energy sector is the major source of reported energy use and CO2 
emissions, with the electricity and heat industries representing the 
largest shares. 

However, the main driver for these energy sector emissions is the con-
sumption of electricity and heat in the end use sectors (industry, build-
ings, transport, and agriculture). Electricity and heat mitigation oppor-
tunities in these end use sectors reduce the need for producing these 
energy carriers upstream and therefore reduce energy and emissions in 
the energy sector.

In order to account for the impact of mitigation activities in the end 
use sectors, a methodology has been developed to reallocate the 
energy consumption and related CO2 emissions from electricity and 
heat produced and delivered to the end use sectors (de Ia Rue du Can 
and Price, 2008).

Using IEA data, the methodology calculates a series of primary energy 
factors and CO2 emissions factors for electricity and heat production 
at the country level. These factors are then used to re-estimate energy 
and emissions from electricity and heat produced and delivered to the 
end use sectors proportionally to their use in each end-use sectors. The 
calculated results are referred to as primary energy3 and indirect CO2 

emissions. 

The purpose of allocating primary energy consumption and indirect 
CO2 emissions to the sectoral level is to relate the energy used and the 
emissions produced along the entire supply chain to provide energy 
services in each sector (consumption-based approach). For example, 
the consumption of one kWh of electricity is not equivalent to the con-
sumption of one kWh of coal or natural gas, because of the energy 
required and the emissions produced in the generation of one kWh of 
electricity. 

Figure A.II.2 shows the resulting reallocation of CO2 emissions from 
electricity and heat production from the energy sector to the industrial, 
buildings, transport, and agriculture sectors at the global level based 
on the methodology outlined in de la Rue du Can and Price (2008) and 
described further below.

A.II.5.1	 Primary electricity and heat factors

Primary electricity and heat factors have been derived as the ratio of 
fuel inputs of power plants relative to the electricity and heat deliv-
ered. These factors reflect the efficiency of these transformations. 

3	 Note that final energy and primary energy consumption are different concepts 
(Section A.II.3.4). Final energy consumption (sometimes called site energy 
consumption) represents the amount of energy consumed in end use applications 
whereas primary energy consumption (sometimes called source energy consump-
tion) in addition includes the energy required to generate, transmit and distribute 
electricity and heat.

Figure A.II.2 | Energy sector electricity and heat CO2 emissions calculated for the end-
use sectors in 2010. Note that industry sector CO2 emissions do not include process 
emissions. Data source: (IEA, 2012b; c).
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Primary Electricity Factor:

PEF =  ​ 
​ ∑ ​e,p​ 

 

  ​EI
  ______  

​ ∑ ​p​ 
 

​EO − E OU − E DL
 ​

Where 

•	 EI is the total energy (e) inputs for producing Electricity in TJ
•	 EO is the total Electricity Output produced in TJ
•	 E OU is the energy use for own use for Electricity production
•	 E DL is the distribution losses needed to deliver electricity to the 

end use sectors

Primary Heat Factor:  

PHF =  ​ 
​ ∑ ​e,p​ 

 

  ​HI
  _______  

​ ∑ ​p​ 
 

​HO − H OU − H DL
 ​

Where 

•	 HI is the total energy (e) inputs for producing Heat in TJ
•	 HO is the total Heat Output produced in TJ
•	 H OU is the energy use for own use for Heat production
•	 H DL is the distribution losses needed to deliver heat to the end 

use sectors

p represents the 6 plant types in the IEA statistics (Main Activity Elec-
tricity Plant, Autoproducer Electricity Plant, Main Activity CHP plant, 
Autoproducer CHP plant, Main Activity Heat Plant and Autoproducer 
Heat Plant)

e represents the energy products

It is important to note that two accounting conventions were used 
to calculate these factors. The first involves estimating the portion of 
fuel input that produces electricity in combined heat and power plants 
(CHP) and the second involves accounting for the primary energy value 
of non-combustible fuel energy used as inputs for the production of 
electricity and heat. The source of historical data for these calculations 
is the International Energy Agency (IEA, 2012c; d).

For the CHP calculation, fuel inputs for electricity production were 
separated from inputs for heat production according to the fixed-heat-
efficiency approach used by the IEA (IEA, 2012c). This approach fixes 
the efficiency for heat production equal to 90 %, which is the typical 
efficiency of a heat boiler (except when the total CHP efficiency was 
greater than 90 %, in which case the observed efficiency is used). 
The estimated input for heat production based on this efficiency was 
then subtracted from the total CHP fuel inputs, and the remaining fuel 
inputs to CHP were attributed to the production of electricity. As noted 
by the IEA, this approach may overstate the actual heat efficiency in 
certain circumstances (IEA, 2012c; d).

As described in Section A.II.4 in more detail, different accounting meth-
ods to report primary energy use of electricity and heat production 

from non-combustible energy sources, including non-biomass renew-
able energy and nuclear energy, exist. The direct equivalent accounting 
method is used here for this calculation. 

Global average primary and electricity factors and their historical 
trends are presented in Figure A.II.3. Average factors for fossil power 
and heat plants are in the range of 2.5 and 3 and factors for non-bio-
mass renewable energy and nuclear energy are by convention a little 
above one, depending on heat and electricity own use consumption 
and distribution losses.

A.II.5.2	 Carbon dioxide emission factors

Carbon dioxide emission factors for electricity and heat have been 
derived as the ratio of CO2 emissions from fuel inputs of power plants 
relative to the electricity and heat delivered. The method is equivalent 
to the one described above for primary factors. The fuel inputs have 
in addition been multiplied by their CO2 emission factors of each fuel 
type as defined in IPCC (2006). The calculation of electricity and heat 
related CO2 emission factors are conducted at the country level. Indi-
rect carbon emissions related to electricity and heat consumption are 
then derived by simply multiplying the amount of electricity and heat 
consumed with the derived electricity and heat CO2 emission factors at 
the sectoral level.

When the results of the methodology described above to estimate 
end-use CO2 emissions from electricity and heat production are 
compared with the reported IEA direct emissions from the heat and 
electricity sectors there is an average difference of + 1.36 % over the 
years 1970 to 2010, indicating a slight overestimation of global CO2 
emissions. This difference varies by year, with the largest negative dif-

Figure A.II.3 | Historical primary electricity and heat factors. Data source: (IEA, 
2012b).
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ference in 1976 (-2.99 %) and the largest positive difference in 1990 
(3.23 %).

The cross-sectoral annual total indirect carbon emissions were then 
normalized to the direct emission from electricity and heat production 
on the global level.

Figure A.II.4 shows the historical electricity CO2 emission factors. The 
factors reflect both the fuel mix and conversion efficiencies in elec-
tricity generation and the distribution losses. Regions with high shares 
of non-fossil electricity generation have low emissions coefficients. For 
example, Latin America has a high share of hydro power and therefore 
a low CO2 emission factor in electricity generation. 

Primary heat and heat carbon factors were also calculated however, 
due to irregularity in data availability over the years at the global level, 
only data from 1990 are shown in the figures. 

The emission factor for natural gas, 56.1 tCO2 per PJ combusted, is 
shown in the graph for comparison. 

A.II.6	 Material flow analysis, 
input-output analysis, 
and lifecycle assessment

In the WGIII AR5, findings from material flow analysis, input-output 
analysis, and lifecycle assessment are used in Chapters 1, 4, 5, 7, 8, 
9, 11, and 12. The following section briefly sketches the intellectual 
background of these methods and discusses their usefulness for miti-

gation research, and discusses some relevant assumptions, limitations, 
and methodological issues. 

The anthropogenic contributions to climate change, caused by fossil 
fuel combustion, land conversion for agriculture, commercial forestry 
and infrastructure, and numerous agricultural and industrial processes, 
result from the use of natural resources, i. e., the manipulation of mate-
rial and energy flows by humans for human purposes. Mitigation 
research has a long tradition of addressing the energy flows and associ-
ated emissions, however, the sectors involved in energy supply and use 
are coupled with each other through material stocks and flows, which 
leads to feedbacks and delays. These linkages between energy and 
material stocks and flows have, despite their considerable relevance for 
GHG emissions, so far gained little attention in climate change mitiga-
tion (and adaptation). The research agendas of industrial ecology and 
ecological economics with their focus on the socioeconomic metabo-
lism (Wolman, 1965; Baccini and Brunner, 1991; Ayres and Simonis, 
1994; Fischer-Kowalski and Haberl, 1997) also known as the biophysical 
economy (Cleveland et al., 1984), can complement energy assessments 
in important manners and support the development of a broader fram-
ing of mitigation research as part of sustainability science. The socio-
economic metabolism consists of the physical stocks and flows with 
which a society maintains and reproduces itself (Fischer-Kowalski and 
Haberl, 2007). These research traditions are relevant for sustainability 
because they comprehensively account for resource flows and hence 
can be used to address the dynamics, efficiency, and emissions of pro-
duction systems that convert or utilize resources to provide goods and 
services to final consumers. Central to the socio-metabolic research 
methods are material and energy balance principles applied at vari-
ous scales ranging from individual production processes to companies, 
regions, value chains, economic sectors, and nations.

An important application of these methods is carbon footprinting, i. e., 
the determination of lifecycle GHG emissions of products, organiza-
tions, households, municipalities, or nations. The carbon footprint of 
products usually determined using lifecycle assessment, while the car-
bon footprint of households, regional entities, or nations is commonly 
modeled using input-output analysis.

A.II.6.1	 Material flow analysis

Material flow analysis (MFA) — including substance flow analysis 
(SFA) — is a method for describing, modelling (using socio-economic 
and technological drivers), simulating (scenario development), and 
visualizing the socioeconomic stocks and flows of matter and energy 
in systems defined in space and time to inform policies on resource 
and waste management and pollution control. Mass- and energy bal-
ance consistency is enforced at the level of goods and / or individual 
substances. As a result of the application of consistency criteria they 
are useful to analyze feedbacks within complex systems, e. g., the 
interrelations between diets, food production in cropland and livestock 

Figure A.II.4 | Historical electricity and heat CO2 emissions factors. Data source: (IEA, 
2012b; c).
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systems, and availability of area for bioenergy production (e. g., Erb 
et al. (2012), see Section 11.4).

The concept of socioeconomic metabolism (Ayres and Kneese, 1969; 
Boulding, 1972; Martinez-Alier, 1987; Baccini and Brunner, 1991; Ayres 
and Simonis, 1994; Fischer-Kowalski and Haberl, 1997) has been devel-
oped as an approach to study the extraction of materials or energy 
from the environment, their conversion in production and consumption 
processes, and the resulting outputs to the environment. Accordingly, 
the unit of analysis is the socioeconomic system (or some of its com-
ponents), treated as a systemic entity, in analogy to an organism or a 
sophisticated machine that requires material and energy inputs from 
the natural environment in order to carry out certain defined functions 
and that results in outputs such as wastes and emissions. 

Some MFAs trace the stocks and flows of aggregated groups of mate-
rials (fossil fuels, biomass, ores and industrial minerals, construction 
materials) through societies and can be performed on the global scale 
(Krausmann et al., 2009), for national economies and groups of coun-
tries (Weisz et  al., 2006), urban systems (Wolman, 1965; Kennedy 
et  al., 2007) or other socioeconomic subsystems. Similarly compre-
hensive methods that apply the same system boundaries have been 
developed to account for energy flows (Haberl, 2001a; b; Haberl et al., 
2006), carbon flows (Erb et al., 2008) and biomass flows (Krausmann 
et al., 2008) and are often subsumed in the Material and Energy Flow 
Accounting (MEFA) framework (Haberl et al., 2004). Other MFAs have 
been conducted for analyzing the cycles of individual substances (e. g., 
carbon, nitrogen, or phosphorus cycles; Erb et al., 2008) or metals (e. g., 
copper, iron, or cadmium cycles; Graedel and Cao, 2010) within socio-
economic systems. A third group of MFAs have a focus on individual 
processes with an aim to balance a wide variety of goods and sub-
stances (e. g., waste incineration, a shredder plant, or a city).

The MFA approach has also been extended towards the analysis of 
socio-ecological systems, i. e., coupled human-environment systems. 
One example for this research strand is the ‘human appropriation of 
net primary production’ or HANPP which assesses human-induced 
changes in biomass flows in terrestrial ecosystems (Vitousek et  al., 
1986; Wright, 1990; Imhoff et al., 2004; Haberl et al., 2007). The socio-
ecological metabolism approach is particularly useful for assessing 
feedbacks in the global land system, e. g., interrelations between 
production and consumption of food, agricultural intensity, livestock 
feeding efficiency, and bioenergy potentials, both residue potentials 
and area availability for energy crops (Haberl et al., 2011; Erb et al., 
2012).

Anthropogenic stocks (built environment) play a crucial role in socio-
metabolic systems: (1) they provide services to the inhabitants, (2) 
their operation often requires energy and releases emissions, (3) any 
increase or renewal / maintenance of these stocks requires materials, 
and (4) the stocks embody materials (often accumulated over the past 
decades or centuries) that may be recovered at the end of the stocks’ 
service lives (‘urban mining’) and, when recycled or reused, substitute 

primary resources and save energy and emissions in materials produc-
tion (Müller et al., 2006). In contrast to flow variables, which tend to 
fluctuate much more, stock variables usually behave more robustly 
and are therefore often suitable as drivers for developing long-term 
scenarios (Müller, 2006). The exploration of built environment stocks 
(secondary resources), including their composition, performance, and 
dynamics, is therefore a crucial pre-requisite for examining long-term 
transformation pathways (Liu et al., 2012). Anthropogenic stocks have 
therefore been described as the engines of socio-metabolic systems. 
Moreover, socioeconomic stocks sequester carbon (Lauk et al., 2012); 
hence policies to increase the carbon content of long-lived infrastruc-
tures may contribute to climate-change mitigation (Gustavsson et al., 
2006).

So far, MFAs have been used mainly to inform policies for resource and 
waste management. Studies with an explicit focus on climate change 
mitigation are less frequent, but rapidly growing. Examples involve the 
exploration of long-term mitigation pathways for the iron / steel indus-
try (Milford et al., 2013; Pauliuk et al., 2013a), the aluminium industry 
(Liu et al., 2011, 2012), the vehicle stock (Pauliuk et al., 2011; Melaina 
and Webster, 2011), or the building stock (Pauliuk et al., 2013b).

A.II.6.2	 Input-output analysis

Input-output (IO) analysis is an approach to trace the production pro-
cess of products by economic sectors, and their use as intermediate 
demand by producing sectors (industries) and final demand includ-
ing that by households and the public sector (Miller and Blair, 1985). 
Input-output tables describe the structure of the economy, i. e., the 
interdependence of different producing sectors and their role in final 
demand. Input-output tables are produced as part of national eco-
nomic accounts (Leontief, 1936). Through the assumption of fixed 
input coefficients, input-output models can be formed, determining, 
e. g., the economic activity in all sectors required to produce a unit of 
final demand. The mathematics of input-output analysis can be used 
with flows denoted in physical or monetary units and has been applied 
also outside economics, e. g., to describe energy and nutrient flows in 
ecosystems (Hannon et al., 1986).

Environmental applications of input-output analysis include analyzing 
the economic role of abatement sectors (Leontief, 1971), quantifying 
embodied energy (Bullard and Herendeen, 1975) and the employment 
benefits of energy efficiency measures (Hannon et al., 1978), describing 
the benefits of pre-consumer scrap recycling (Nakamura and Kondo, 
2001), tracing the material composition of vehicles (Nakamura et al., 
2007), and identifying an environmentally desirable global division 
of labour (Stromman et al., 2009). Important for mitigation research, 
input-output analysis has been used to estimate the GHG emissions 
associated with the production and delivery of goods for final con-
sumption, the ‘carbon footprint’ (Wiedmann and Minx, 2008). This type 
of analysis basically redistributes the emissions occurring in producing 
sectors to final consumption. It can be used to quantify GHG emissions 
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associated with import and export (Wyckoff and Roop, 1994), with 
national consumption (Hertwich and Peters, 2009), or the consump-
tion by specific groups of society (Lenzen and Schaeffer, 2004), regions 
(Turner et al., 2007), or institutions (Larsen and Hertwich, 2009; Minx 
et al., 2009; Peters, 2010; Berners-Lee et al., 2011).4 

Global, multiregional input-output models are currently seen as the 
state-of-the-art tool to quantify ‘consumer responsibility’ (Chapter 5)
(Hertwich, 2011; Wiedmann et  al., 2011). Multiregional tables are 
necessary to adequately represent national production patterns and 
technologies in the increasing number of globally sourced products. 
Important insights provided to mitigation research are the quanti-
fication of the total CO2 emissions embodied in global trade (Peters 
and Hertwich, 2008), the growth of net emissions embodied in trade 
from non-Annex B to Annex B countries (Peters et al., 2011b), to show 
that the UK (Druckman et al., 2008; Wiedmann et al., 2010) and other 
Annex B countries have increasing carbon footprints while their ter-
ritorial emissions are decreasing, to identify the contribution of differ-
ent commodity exports to the rapid growth in China’s GHG emissions 
(Xu et al., 2009), and to quantify the income elasticity of the carbon 
footprint of different consumption categories like food, mobility, and 
clothing (Hertwich and Peters, 2009).

Input-output models have an increasingly important instrumental role 
in mitigation. They are used as a backbone for consumer carbon calcu-
lators, to provide sometimes spatially explicit regional analysis (Lenzen 
et al., 2004), to help companies and public institutions target climate 
mitigation efforts , and to provide initial estimates of emissions associ-
ated with different alternatives (Minx et al., 2009).

Input-output calculations are usually based on industry-average pro-
duction patterns and emissions intensities and do not provide an 
insight into marginal emissions caused by additional purchases. How-
ever, efforts to estimate future and marginal production patterns and 
emissions intensities exist (Lan et  al., 2012). At the same time, eco-
nomic sector classifications in many countries are not very fine, so that 
IO tables provide carbon footprint averages of broad product groups 
rather than specific products, but efforts to disaggregate tables to pro-
vide more detail in environmentally relevant sectors exist (Tukker et al., 
2013). Many models are not good at addressing waste management 
and recycling opportunities, although hybrid models with a physical 
representation of end-of-life processes do exist (Nakamura and Kondo, 
2001). At the time of publication, national input-output tables describe 
the economy several years ago. Multiregional input-output tables are 
produced as part of research efforts and need to reconcile different 
national conventions for the construction of the tables and conflict-
ing international trade data (Tukker et al., 2013). Efforts to provide a 
higher level of detail of environmentally relevant sectors and to now-
cast tables are currently under development (Lenzen et al., 2012). 

4	 GHG emissions related to land-use change have not yet been addressed in MRIO-
based carbon footprint analysis due to data limitations. 

A.II.6.3	 Lifecycle assessment

Product lifecycle assessment (LCA) was developed as a method to 
determine the embodied energy use (Boustead and Hancock, 1979) 
and environmental pressures associated with specific product sys-
tems (Finnveden et al., 2009). A product system describes the pro-
duction, distribution, operation, maintenance, and disposal of the 
product. From the beginning, the assessment of energy technologies 
has been important, addressing questions such as how many years 
of use would be required to recover the energy expended in produc-
ing a photovoltaic cell (Kato et al., 1998). Applications in the con-
sumer products industry addressing questions of whether cloth or 
paper nappies (diapers) are more environmentally friendly (Vizcarra 
et al., 1994), or what type of washing powder, prompted the devel-
opment of a wider range of impact assessment methods addressing 
issues such as aquatic toxicity (Gandhi et al., 2010), eutrophication, 
and acidification (Huijbregts et al., 2000). By now, a wide range of 
methods has been developed addressing either the contribution to 
specific environmental problems (midpoint methods) or the dam-
age caused to ecosystem or human health (endpoint methods). At 
the same time, commonly used databases have collected lifecycle 
inventory information for materials, energy products, transporta-
tion services, chemicals, and other widely used products. Together, 
these methods form the backbone for the wide application of LCA 
in industry and for environmental product declarations, as well as 
in policy.

Lifecycle assessment plays an increasingly important role in climate 
mitigation research (SRREN Annex II, Moomaw et al., 2011). In WGIII 
AR5, lifecycle assessment has been used to quantify the GHG emis-
sions associated with mitigation technologies, e. g., wind power, heat 
recovery ventilation systems, or carbon dioxide capture and storage. 
Lifecycle assessment is thus used to compare different ways to deliver 
the same functional unit, such as one kWh of electricity. 

Lifecycle assessment has also been used to quantify co-benefits and 
detrimental side-effects of mitigation technologies and measures, 
including other environmental problems and the use of resources such 
as water, land, and metals. Impact assessment methods have been 
developed to model a wide range of impact pathways. 

A range of approaches is used in LCA to address the climate impact 
of environmental interventions, starting from GHG through other pol-
lutants (such as aerosols) to the inclusion of geophysical effects such 
as albedo changes or indirect climate effects (Bright et al., 2012), also 
exploring radiation-based climate metrics (Peters et  al., 2011a). The 
timing of emissions and removals has traditionally not been consid-
ered, but issues associated with biomass production and use have 
given rise to a approaches to quantify the effects of carbon seques-
tration and temporary carbon storage in long-lived products (Brandão 
et al., 2013; Guest et al., 2013; Levasseur et al., 2013) and of tempo-
rarily increased atmospheric CO2 concentrations from ‘carbon-neutral’ 
bioenergy systems (Cherubini et al., 2011). 
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Life-cycle inventories are normally derived from empirical information 
on actual processes or modelled based on engineering calculations. A 
key aspect of lifecycle inventories for energy technologies is that they 
contribute to understanding the thermodynamics of the wider prod-
uct system; combined with appropriate engineering insight, they can 
provide some upper bound for possible technological improvements. 
These process LCAs provide detail and specificity, but do usually not 
cover all input requirements, as this would be too demanding. The cut-
off error is the part of the inventory that is not covered by conventional 
process analysis; it is commonly between 20 – 50 % of the total impact 
(Lenzen, 2001). Hybrid lifecycle assessment utilizes input-output mod-
els to cover inputs of services or items that are used in small quan-
tities (Treloar, 1996; Suh et  al., 2004; Williams et  al., 2009). Through 
their better coverage of the entire product system, hybrid LCAs tend 
to more accurately represent all inputs to production (Majeau-Bettez 
et al., 2011). They have also been used to estimate the cut-off error of 
process LCAs (Norris, 2002; Deng et al., 2011). 

It must be emphasized that LCA is a research method that answers 
specific research questions. To understand how to interpret and use 
the results of an LCA case study, it is important to understand what 
the research question is. The research questions “what are the envi-
ronmental impacts of product x” or “… of technology y” needs to be 
specified with respect to timing, regional context, operational mode, 
background system, etc. Modelling choices and assumption thus 
become part of an LCA. This implies that LCA studies are not always 
comparable because they do not address the same research question. 
Further, most LCAs are interpreted strictly on a functional unit basis, 
expressing the impact of a unit of the product system in a described 
production system, without either up-scaling the impacts to total 
impacts in the entire economy or saying something about the scale-
dependency of the activity. For example, an LCA may identify the use 
of recycled material as beneficial, but the supply of recycled material 
is limited by the availability of suitable waste, so that an up-scaling 
of recycling is not feasible. Hence, an LCA that shows that recycling 
is beneficial is not sufficient to document the availability of further 
opportunities to reduce emissions. Lifecycle assessment, however, 
coupled with an appropriate system models (using material flow data) 
is suitable to model the emission gains from the expansion of further 
recycling activities. 

Lifecycle assessment was developed with the intention to quantify 
resource use and emissions associated with existing or prospective 
product systems, where the association reflects physical causality 
within economic systems. Depending on the research question, it can 
be sensible to investigate average or marginal inputs to production. 
Departing from this descriptive approach, it has been proposed to 
model a wider socioeconomic causality describing the consequences 
of actions (Ekvall and Weidema, 2004). While established methods and 
a common practice exist for descriptive or ‘attributional’ LCA, such 
methods and standard practice are not yet established in ‘consequen-
tial’ LCA (Zamagni et  al., 2012). Consequential LCAs are dependent 
on the decision context. It is increasingly acknowledged in LCA that 

for investigating larger sustainability questions, the product focus is 
not sufficient and larger system changes need to be modelled as such 
(Guinée et al., 2010).

For climate change mitigation analysis, it is useful to put LCA in a wider 
scenario context (Arvesen and Hertwich, 2011; Viebahn et al., 2011). 
The purpose is to better understand the contribution a technology can 
make to climate change mitigation and to quantify the magnitude of 
its resource requirements, co-benefits and side-effects. For mitigation 
technologies on both the demand and supply side, important contribu-
tors to the total impact are usually energy, materials, and transport. 
Understanding these contributions is already valuable for mitigation 
analysis. As all of these sectors will change as part of the scenario, 
LCA-based scenarios show how much impacts per unit are likely to 
change as part of the scenario. 

Some LCAs take into account behavioural responses to different tech-
nologies (Takase et al., 2005; Girod et al., 2011). Here, two issues must 
be distinguished. One is the use of the technology. For example, it has 
been found that better insulated houses consistently are heated or 
cooled to higher / lower average temperature (Haas and Schipper, 1998; 
Greening et  al., 2001). Not all of the theoretically possible technical 
gain in energy efficiency results in reduced energy use (Sorrell and 
Dimitropoulos, 2008). Such direct rebound effects can be taken into 
account through an appropriate definition of the energy services com-
pared, which do not necessarily need to be identical in terms of the 
temperature or comfort levels. Another issue are larger market-related 
effects and spillover effects. A better-insulated house leads to energy 
savings. Both questions of (1) whether the saved energy would then 
be used elsewhere in the economy rather than not produced, and (2) 
what the consumer does with the money saved, are not part of the 
product system and hence of product lifecycle assessment. They are 
sometimes taken up in LCA studies, quantified, and compared. How-
ever, for climate mitigation analysis, these mechanisms need to be 
addressed by scenario models on a macro level. (See also Section 11.4 
for a discussion of such systemic effects).

A.II.7	 Fat tailed distributions

If we have observed N independent loss events from a given loss dis-
tribution, the probability that the next loss event will be worse than all 
the others is 1 / (N+1). How much worse it will be depends on the tail 
of the loss distribution. Many loss distributions including losses due 
to hurricanes are very fat tailed. The notion of a ‘fat tailed distribu-
tion’ may be given a precise mathematical meaning in several ways, 
each capturing different intuitions. Older definitions refer to ‘fat tails’ 
as ‘leptokurtic’ meaning that the tails are fatter than the normal dis-
tribution. Nowadays, mathematical definitions are most commonly 
framed in terms of regular variation or subexponentiality (Embrechts 
et al., 1997).
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A positive random variable X has regular variation with tail index 
α > 0 if the probability P(X > x) of exceeding a value x decreases at 
a polynomial rate x-a as x gets large. For any r > α, the r-th moment 
of X is infinite, the α-th moment may be finite or infinite depending 
on the distribution. If the first moment is infinite, then running aver-
ages of independent realizations of X increase to infinity. If the second 
moment is infinite, then running averages have an infinite variance 
and do not converge to a finite value. In either case, historical averages 
have little predictive value. The gamma, exponential, and Weibull distri-
butions all have finite r-th moment for all positive r.

A positive random variable X is subexponential if for any n indepen-
dent copies X1,…Xn, the probability that the sum X1+...+Xn exceeds 
a value x becomes identical to the probability that the maximum of 
X1,…Xn exceeds x, as x gets large. In other words, ‘the sum of X1,…
Xn is driven by the largest of the X1,…Xn’. Every regularly varying 
distribution is subexponential, but the converse does not hold. The 
Weibull distribution with shape parameter less than one is subexpo-
nential but not regularly varying. All its moments are finite, but the 
sum of n independent realizations tends to be dominated by the single 
largest value.

For X with finite first moment, the mean excess curve is a useful diag-
nostic. The mean excess curve of X at point x is the expected value 
of X  –  x given that X exceeds x. If X is regularly varying with tail 
index α > 1, the mean excess curve of X is asymptotically linear with 

slope 1 / (α-1). If X is subexponential its mean excess curve increases 
to infinity, but is not necessarily asymptotically linear. Thus, the mean 
excess curve for a subexponential distribution may be ‘worse’ than 
a regularly varying distribution, even though the former has finite 
moments. The mean excess curve for the exponential distribution is 
constant, that for the normal distribution is decreasing. The follow-
ing figures show mean excess curves for flood insurance claims in the 
United States, per county per year per dollar income (hereby correct-
ing for growth in exposure, Figure A.II.5) and insurance indemnities 
for crop loss per county per year in the United States (Figure A.II.6). 
Note that flood claims’ mean excess curve lies well above the line 
with unit slope, whereas that for crop losses lie below (Kousky and 
Cooke, 2009).

A.II.8	 Growth rates

For the calculation of annual growth rates as frequently shown in this 
report, a number of different methods exist, all of which lead to slightly 
different numerical results. If not stated otherwise, the annual growth 
rates shown, have been derived using the Log Difference Regression 
technique or Geometric Average, techniques which can be shown to 
be equivalent.

Figure A.II.6 | Mean excess curve of US crop insurance indemnities paid from the US 
Department of Agriculture’s Risk Management Agency, aggregated by county and year 
for the years 1980 to 2008 in USD2010. Note: The vertical axis gives mean excess loss, 
given loss at least as large as the horizontal axis. Source: adapted from (Kousky and 
Cooke, 2009).
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Figure A.II.5 | Mean excess curve for US flood insurance claims from the National 
Flood Insurance Program per dollar income per county per year for the years 1980 to 
2008 in USD2010. Considering dollar claims per dollar income in each county corrects for 
increasing exposure. Note: The vertical axis gives mean excess loss, given loss at least as 
large as the horizontal axis. Source: adapted from (Kousky and Cooke, 2009).
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The Log Difference Regression growth rate rLD is calculated the follow-
ing way:

​r​LD​ = ​e​β​ − 1  with  β = ​  1 __ 
T − 1

 ​​ ∑ ​ 
t = 2

  ​ 
T

  ​Δln​X​t​� (Equation A.II.10)

The Geometric Average growth rate rGEO is calculated as shown below:

​r​GEO​ = ​​( ​ ​X​T​ _ 
​X​1​

 ​ )​​​ 
1 __ 

T − 1
 ​
​ − 1� (Equation A.II.11)

Other methods that are used to calculate annual growth rates include 
the Ordinary Least Square technique and the Average Annual Growth 
Rate technique.

Part III:	 Data sets

A.II.9	 Historical data

To aid coherency and consistency, core historic data presented 
throughout the report uses the same sources and applied the same 
methodologies and standards — these are detailed here:

•	 The standard country aggregations to regions are detailed in Sec-
tion A.II.2.

•	 The central historic GHG emission data set was based on IEA 
(2012c) and Emissions Database for Global Atmospheric Research 
(EDGAR) (JRC / PBL, 2013) data. This data set provides annual emis-
sions on a country level for the time span 1970 to 2010. The two 
sources are mapped as described in Section A.II.9.1.

•	 As default dataset for GDP in Purchasing Power Parity (PPP) World 
Bank data was supplemented according to the methodology 
described in Section A.II.9.2.

•	 The data sources and methodology for historic indirect emissions 
from electricity and heat production are defined in Section A.II.5. 

•	 Lifecycle GHG emission data sets of energy supply technolo-
gies, predominantly used in Chapter 7, are introduced in Section 
A.II.9.3. The underlying methodology is explained in Section A.II.6 
of this Annex.

A.II.9.1	 Mapping of emission sources to 
sectors

The list below shows how emission sources are mapped to sectors 
throughout the WGIII AR5. This defines unambiguous system boundar-
ies for the sectors as represented in Chapters 7 – 11 in the report and 
enables a discussion and representation of emission sources without 
double-counting.

Emission sources refer to the definitions by the IPCC Task Force on 
National Greenhouse Gas Inventories (TFI) (IPCC, 2006). Where fur-
ther disaggregated data was required, additional source categories 
were introduced consistent with the underlying datasets (IEA, 2012c; 
JRC / PBL, 2013). This information appears in the following systematic 
sequence throughout this section:

Emission source category (chapter emission source 
category numbering)

Emission Source (Sub-)Category (IPCC Task force definition) 
[gases emitted by emission source (CO2 data set used)]

A common dataset (‘IEA / EDGAR’) is used across WGIII AR5 chapters to 
ensure consistent representation of emission trends across the report. 
Uncertainties of this data are discussed in the respective chapters 
(Chapter 1; Chapter 5; and Chapter 11). CO2 emissions from fossil fuel 
combustion are taken from IEA (2012c), the remaining CO2 and non-
CO2 GHG emissions are taken from EDGAR (JRC / PBL, 2013), see the 
following sections for categories and sources used. For the FOLU sub-
sector EDGAR (JRC / PBL, 2013) represents land-based CO2 emissions 
from forest and peat fires and decay to approximate the CO2 flux from 
anthropogenic emission sources.

Following general scientific practice, 100-year GWPs from the IPCC 
Second Assessment Report (SAR) (Schimel et  al., 1996) are used as 
the index for converting GHG emissions to common units of CO2-
equivalent emissions in EDGAR (JRC / PBL, 2013). The following gases 
and associated GWPs based on the SAR are covered in EDGAR: CO2 
(1), CH4 (21), N2O (310), HFC-125 (2800), HFC-134a (1300), HFC-143a 
(3800), HFC-152a (140), HFC-227ea (2900), HFC-23 (11700), HFC-
236fa (6300), HFC-245fa (560), HFC-32 (650), HFC-365mfc (1000), 
HFC-43 – 10-mee (1300), C2F6 (9200), C3F8 (7000), C4F10 (7000), C5F12 
(7500), C6F14 (7400), C7F16 (7400), c-C4F8 (8700), CF4 (6500), SF6 
(23900).

A.II.9.1.1	 Energy (Chapter 7)

Electricity & heat (7.1)
Power and Heat Generation (1A1a) [CO2 (IEA), CH4, N2O]

Public Electricity Plants (1A1a1) [CO2 (IEA)]
Public Combined Heat and Power Generation (1A1a2) [CO2 (IEA)]
Public Heat Plants (1A1a3) [CO2 (IEA)]
Public Electricity Generation (own use) (1A1a4) [CO2 (IEA)]
Electricity Generation (autoproducers) (1A1a5) [CO2 (IEA)]
Combined Heat and Power Generation (autoproducers) (1A1a6) 
[CO2 (IEA)]
Heat Plants (autoproducers) (1A1a7) [CO2 (IEA)]

Public Electricity and Heat Production (biomass) (1A1ax) [CH4, N2O]
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Petroleum refining (7.2)
Other Energy Industries (1A1bc) [CO2 (IEA)]

Manufacture of solid fuels (7.3)
Other transformation sector (BKB, etc.) (1A1r) [CH4, N2O]
Manufacture of Solid Fuels and Other Energy Industries (biomass) 
(1A1cx) [CH4, N2O]

Fuel production and transport (7.4)
Fugitive emissions from solids fuels except coke ovens (1B1r)  
[CO2 (EDGAR), CH4, N2O]
Flaring and fugitive emissions from oil and Natural Gas (1B2)  
[CO2 (EDGAR), CH4, N2O]

Others (7.5)
Electrical Equipment Manufacture (2F8a) [SF6]
Electrical Equipment Use (includes site installation) (2F8b) [SF6]
Fossil fuel fires (7A) [CO2 (EDGAR), CH4, N2O]

Indirect N2O emissions from energy (7.6)
Indirect N2O from NOx emitted in cat. 1A1 (7B1) [N2O]
Indirect N2O from NH3 emitted in cat. 1A1 (7C1) [N2O]

A.II.9.1.2	 Transport (Chapter 8)

Aviation (8.1)
Domestic air transport (1A3a) [CO2 (IEA), CH4, N2O]

Road transportation (8.2)
Road transport (includes evaporation) (fossil) (1A3b) [CO2 (IEA), CH4, 
N2O]
Road transport (includes evaporation) (biomass) (1A3bx) [CH4, N2O]
Adiabatic prop: tyres (2F9b) [SF6]

Rail transportation (8.3)
Rail transport (1A3c) [CO2 (IEA), CH4, N2O]
Non-road transport (rail, etc.) (fossil) (biomass) (1A3cx) [CH4, N2O]

Navigation (8.4)
Inland shipping (fossil) (1A3d) [CO2 (IEA), CH4, N2O]
Inland shipping (fossil) (biomass) (1A3dx) [CH4, N2O]

Others incl. indirect N2O emissions from transport (8.5)
Non-road transport (fossil) (1A3e) [CO2 (IEA), CH4, N2O]

Pipeline transport (1A3e1) [CO2 (IEA)]
Non-specified transport (1A3er) [CO2 (IEA)]

Non-road transport (fossil) (biomass) (1A3ex) [CH4, N2O]
Refrigeration and Air Conditioning Equipment (HFC) (Transport) 
(2F1a1) [HFC]
Indirect N2O from NOx emitted in cat. 1A3 (7B3) [N2O]
Indirect N2O from NH3 emitted in cat. 1A3 (7C3) [N2O]

International Aviation (8.6)
Memo: International aviation (1C1) [CO2 (IEA), CH4, N2O]

International Shipping (8.7)
Memo: International navigation (1C2) [CO2 (IEA), CH4, N2O]

A.II.9.1.3	 Buildings (Chapter 9)

Commercial (9.1)
Commercial and public services (fossil) (1A4a) [CO2 (IEA), CH4, N2O]
Commercial and public services (biomass) (1A4ax) [CH4, N2O]

Residential (9.2)
Residential (fossil) (1A4b) [CO2 (IEA), CH4, N2O]
Residential (biomass) (1A4bx) [CH4, N2O]

Others (9.3)
Refrigeration and Air Conditioning Equipment (HFC) (Building) (2F1a2) 
[HFC]
Fire Extinguishers (2F3) [PFC]
Aerosols /  Metered Dose Inhalers (2F4) [HFC]
Adiabatic prop: shoes and others (2F9a) [SF6]
Soundproof windows (2F9c) [SF6]

Indirect N2O emissions from buildings (9.4)
Indirect N2O from NOx emitted in cat. 1A4 (7B4) [N2O]
Indirect N2O from NH3 emitted in cat. 1A4 (7C4) [N2O]

A.II.9.1.4	 Industry (Chapter 10)

Ferrous and non-ferrous metals (10.1)
Fuel combustion coke ovens (1A1c1) [CH4, N2O]
Blast furnaces (pig iron prod.) (1A1c2) [CH4, N2O]
Iron and steel (1A2a) [CO2 (IEA), CH4, N2O]
Non-ferrous metals (1A2b) [CO2 (IEA), CH4, N2O]
Iron and steel (biomass) (1A2ax) [CH4, N2O]
Non-ferrous metals (biomass) (1A2bx) [CH4, N2O]
Fuel transformation coke ovens (1B1b1) [CO2 (EDGAR), CH4]
Metal Production (2C) [CO2 (EDGAR), CH4, PFC, SF6]

Iron and Steel Production (2C1) [CO2 (EDGAR)]
Crude steel production total (2C1a) [CO2 (EDGAR)]

Ferroy Alloy Production (2C2) [CO2 (EDGAR)]
Aluminum production (primary) (2C3) [PFC]
SF6 Used in Aluminium and Magnesium Foundries (2C4) [SF6]

Magnesium foundries: SF6 use (2C4a) [SF6]
Aluminium foundries: SF6 use (2C4b) [SF6]

Non-ferrous metals production (2Cr) [CO2 (EDGAR)]

Chemicals (10.2)
Chemicals (1A2c) [CO2 (IEA), CH4, N2O]
Chemicals (biomass) (1A2cx) [CH4, N2O]
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Production of chemicals (2B) [CO2 (EDGAR), CH4, N2O]
Production of Halocarbons and SF6 (2E) [HFC, SF6]
Non-energy use of lubricants / waxes (2G) [CO2 (EDGAR)]
Solvent and other product use: paint (3A) [CO2 (EDGAR)]
Solvent and other product use: degrease (3B) [CO2 (EDGAR)]
Solvent and other product use: chemicals (3C) [CO2 (EDGAR)]
Other product use (3D) [CO2 (EDGAR), N2O]

Cement production (10.3)
Cement production (2A1) [CO2 (EDGAR)]

Landfill & waste incineration (10.4)
Solid waste disposal on land (6A) [CH4]
Waste incineration (6C) [CO2 (EDGAR), CH4, N2O]
Other waste handling (6D) [CH4, N2O]

Wastewater treatment (10.5)
Wastewater handling (6B) [CH4, N2O]

Other industries (10.6)
Pulp and paper (1A2d) [CO2 (IEA), CH4, N2O]
Food and tobacco (1A2e) [CO2 (IEA), CH4, N2O]
Other industries (stationary) (fossil) (1A2f) [CO2 (IEA), CH4, N2O]

Non-metallic minerals (1A2f1) [CO2 (IEA)]
Transport equipment (1A2f2) [CO2 (IEA)]
Machinery (1A2f3) [CO2 (IEA)]
Mining and quarrying (1A2f4) [CO2 (IEA)]
Wood and wood products (1A2f5) [CO2 (IEA)]
Construction (1A2f6) [CO2 (IEA)]
Textile and leather (1A2f7) [CO2 (IEA)]
Non-specified industry (1A2f8) [CO2 (IEA)]

Pulp and paper (biomass) (1A2dx) [CH4, N2O]
Food and tobacco (biomass) (1A2ex) [CH4, N2O]
Off-road machinery: mining (diesel) (1A5b1) [CH4, N2O]
Lime production (2A2) [CO2 (EDGAR)]
Limestone and Dolomite Use (2A3) [CO2 (EDGAR)]
Production of other minerals (2A7) [CO2 (EDGAR)]
Refrigeration and Air Conditioning Equipment (PFC) (2F1b) [PFC]
Foam Blowing (2F2) [HFC]
F-gas as Solvent (2F5) [PFC]
Semiconductor Manufacture (2F7a) [HFC, PFC, SF6]
Flat Panel Display (FPD) Manufacture (2F7b) [PFC, SF6]
Photo Voltaic (PV) Cell Manufacture (2F7c) [PFC]
Other use of PFC and HFC (2F9) [HFC, PFC]
Accelerators / HEP (2F9d) [SF6]
Misc. HFCs / SF6 consumption (AWACS, other military, misc.) (2F9e) 
[SF6]
Unknown SF6 use (2F9f) [SF6]

Indirect N2O emissions from industry (10.7)
Indirect N2O from NOx emitted in cat. 1A2 (7B2) [N2O]
Indirect N2O from NH3 emitted in cat. 1A2 (7C2) [N2O]

A.II.9.1.5	 AFOLU (Chapter 11)

Fuel combustion (11.1)
Agriculture and forestry (fossil) (1A4c1) [CO2 (IEA), CH4, N2O]
Off-road machinery: agric. / for. (diesel) (1A4c2) [CH4, N2O]
Fishing (fossil) (1A4c3) [CO2 (IEA), CH4, N2O]
Non-specified Other Sectors (1A4d) [CO2 (IEA), CH4, N2O]
Agriculture and forestry (biomass) (1A4c1x) [CH4, N2O]
Fishing (biomass) (1A4c3x) [N2O]
Non-specified other (biomass) (1A4dx) [CH4, N2O]

Livestock (11.2)
Enteric Fermentation (4A) [CH4]
Manure management (4B) [CH4, N2O]

Rice cultivation (11.3)
Rice cultivation (4C) [CH4]

Direct soil emissions (11.4)
Other direct soil emissions (4D4) [CO2 (EDGAR)]
Agricultural soils (direct) (4Dr) [N2O]

Forrest fires and decay (11.5)
Savannah burning (4E) [CH4, N2O]
Forest fires (5A) [CO2 (EDGAR), CH4, N2O]
Grassland fires (5C) [CH4, N2O]
Forest Fires-Post burn decay (5F2) [CO2 (EDGAR), N2O]

Peat fires and decay (11.6)
Agricultural waste burning (4F) [CH4, N2O]
Peat fires and decay of drained peatland (5D) [CO2 (EDGAR), CH4, N2O]

Indirect N2O emissions from AFOLU (11.7)
Indirect Emissions (4D3) [N2O]
Indirect N2O from NOx emitted in cat. 5 (7B5) [N2O]
Indirect N2O from NH3 emitted in cat. 5 (7C5) [N2O]

A.II.9.1.6	 Comparison of IEA and EDGAR CO2 emission 
datasets

As described above the merged IEA / EDGAR historic emission dataset 
uses emission data from IEA (2012c) and EDGAR (JRC / PBL, 2013). Here 
we compare IEA / EDGAR to the pure EDGAR dataset (JRC / PBL, 2013). 
The comparison details the differences between the two datasets as 
the remaining CO2 and non-CO2 GHG emissions are identical between 
the two datasets. Table A.II.11 maps EDGAR categories to the IEA cat-
egories used in IEA / EDGAR forming 21 groups. Figure A.II.7 shows the 
quantitative differences for aggregated global emissions of these 21 
groups between the two sources. 
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Table A.II.11 | Mapping of IEA (2012c) and EDGAR (JRC / PBL, 2013) CO2 emission categories. Figure A.II.7 shows the quantitative difference for each Comparison Group (using 
Comparison Group number as reference). 

Comparison Groups EDGAR IEA IEA/EDGAR 
categorynumber group name IPCC category category name category name

1 Power Generation 1A1a Public electricity and heat production

Main activity electricity plants 1A1a1

Main activity CHP plants 1A1a2

Main activity heat plants 1A1a3

Own use in electricity, CHP and heat plants 1A1a4

Autoproducer electricity plants 1A1a5

Autoproducer CHP plants 1A1a6

Autoproducer heat plants 1A1a7

2 Other Energy Industries

1A1c1 Fuel combustion coke ovens

Other energy industry own use 1A1bc1A1c2 Blast furnaces (pig iron prod.)

1A1r Other transformation sector (BKB, etc.)

3 Iron and steel 1A2a Iron and steel Iron and steel 1A2a

4 Non-ferrous metals 1A2b Non-ferrous metals Non-ferrous metals 1A2b

5 Chemicals 1A2c Chemicals Chemical and petrochemical 1A2c

6 Pulp and paper 1A2d Pulp and paper Paper, pulp and printing 1A2d

7 Food and tobacco 1A2e Food and tobacco Food and tobacco 1A2e

8 Other Industries w/o NMM 1A2f Other industries (incl. offroad) (fos.)

Transport equipment 1A2f2

Machinery 1A2f3

Mining and quarrying 1A2f4

Wood and wood products 1A2f5

Construction 1A2f6

Textile and leather 1A2f7

Non-specified industry 1A2f8

9 Non-metallic minerals 1A2f-NMM Non-metallic minerals (cement proxy) Non-metallic minerals 1A2f1

10 Domestic air transport 1A3a Domestic air transport Domestic aviation 1A3a

11
Road transport (incl. 
evap.) (foss.)

1A3b Road transport (incl. evap.) (foss.) Road 1A3b

12 Rail transport 1A3c Non-road transport (rail, etc.) (fos.) Rail 1A3c

13 Inland shipping (fos.) 1A3d Inland shipping (fos.) Domestic navigation 1A3d

14 Other transport 1A3e Non-road transport (fos.)

Pipeline transport 1A3e1

Non-specified transport 1A3er

Non-energy use in transport 1A3er

15
Commercial and public 
services (fos.)

1A4a Commercial and public services (fos.) Commercial and public services 1A4a

16 Residential (fos.) 1A4b Residential (fos.) Residential 1A4b

17 Agriculture and forestry (fos.)

1A4c1 Agriculture and forestry (fos.)

Agriculture/forestry 1A4c11A4c2 Off-road machinery: agric./for. (diesel)

1A5b1 Off-road machinery: mining (diesel)

18 Fishing (fos.) 1A4c3 Fishing (fos.) Fishing 1A4c3

19 Non-specified Other Sectors 1A4d Non-specified other (fos.) Non-specified other 1A4d

20 Memo: International aviation 1C1 International air transport Memo: International aviation bunkers 1C1

21
Memo: International 
navigation

1C2  International marine transport (bunkers) Memo: International marine bunkers 1C2
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A.II.9.2	 Historic GDP PPP data

As default dataset for GDP in Purchasing Power Parity (PPP) World 
Bank data was used (World Bank, 2013). In line with the methodology 
described in Section A.II.1.3 and by Nordhaus (2007) the initial data-
set (1980 – 2012 PPP in constant Int$2011

5) was extended backwards 
using World Bank GDP growth rates in constant local currency unit6. 
Further data gaps were closed extending World Bank data by apply-
ing growth rates as supplied by the IMF (2012) for 1980 and later. For 
gaps prior to 1980 Penn World Tables (PWT)(Heston et al., 2011) was 
used. In addition, missing countries were added using PWT (Heston 
et al., 2011)(Cuba, Puerto Rico, Marshall Islands, Somalia, Bermuda), 
IMF (2012) (Kosovo, Myanmar, Tuvala, Zimbabwe) and IEA (Dem Rep. 
Korea, Gibraltar, Netherlands Antilles) GDP data.

A.II.9.3	 Lifecycle greenhouse gas emissions

In Chapter 7, Figure 7.6 and 7.7, the lifecycle GHG emissions of dif-
ferent technologies are compared. This section describes how these 
numbers are derived. The air pollutant emission numbers in Figure 7.8 

5	 http: /  / data.worldbank.org / indicator / NY.GDP.MKTP.PP.KD
6	 http: /  / data.worldbank.org / indicator / NY.GDP.MKTP.KN

are from (Hertwich et al., 2013). The assessment of GHG emissions and 
other climate effects associated with electricity production technolo-
gies presented here is based on two distinct research enterprises.

The first effort started with the review of lifecycle GHG emission started 
for SRREN (Sathaye et al., 2011). This work was extended to a harmo-
nization of LCA studies following the approach by Farrell et al. (2006) 
and resulted in a set of papers published a special issue of the Journal 
of Industrial Ecology (Brandão et  al., 2012; Heath and Mann, 2012). 
The collected data points of LCA results of GHG emissions of differ-
ent technologies from this comprehensive review are available online 
in tabular and chart form at http: /  / en.openei.org / apps / LCA /  and have 
been obtained from there, but the underlying scientific papers from the 
peer reviewed literature are referred to here. 

The second effort is a broader study of lifecycle environmental impacts 
and resource requirements under way for the International Resource 
Panel (Hertwich et al., 2013). The study aims at a consistent technol-
ogy comparison where lifecycle data collected under uniform instruc-
tions in a common format are evaluated in a single assessment model 
based on a common set of background processes. The model is capable 
of evaluating environmental impacts in nine different regions and 
reflecting the background technology at three different points in time 
(2010 / 30 / 50). It addresses more complete inventories than common 
process-based analysis through the use of hybrid LCA. 

Figure A.II.7 | Difference of CO2 emissions between analogous IEA (2012c) and EDGAR (JRC / PBL, 2013) categories as detailed in Table A.II.11. (Numbers in key refer to Table 
A.II.11 Comparison Groups).
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The GHG emissions for coal carbon dioxide capture and storage (CCS), 
PV, concentrating solar power (CSP), and wind power associated with 
the two different efforts have been compared and have been found to 
be in agreement. The data has been supplemented by selected litera-
ture data where required. The specific numbers displayed come from 
following data sources.

A.II.9.3.1	 Fossil fuel based power

For fossil fuel based power, three different sources of emissions were 
distinguished: (1) direct emissions from the power plant, (2) emissions 
of methane from the fuel production and delivery system, and (3) the 
remaining lifecycle emissions, mostly connected to the infrastructure 
of the entire energy system including the power plant itself, and sup-
plies such as solvents. Each of these emissions categories was assessed 
separately, because emerging findings on methane emissions required 
a reassessment of the lifecycle emissions of established studies, which 
often use only a generic emissions factor. In our work, probability dis-
tributions for emissions from the three different systems were assessed 
and combined through a Monte Carlo analysis. 

Fugitive emissions: The most important source of indirect emissions 
of fossil fuel based power is the supply of fuel, where fugitive emis-
sions of methane are a major source of GHG gases. We have revis-
ited the issue of fugitive methane emissions given new assessments 

of these emissions. As described in Section 7.5.1, fugitive emissions 
were modelled as the product of a log-normal distributions based on 
the parameters specified in Table A.II.12 and the efficiencies given by 
a triangular distribution with the parameters specified in Table A.II.13. 

The data for the infrastructure component is from Singh et al. (2011a). 
A uniform distribution was used in the Monte Carlo Analysis. The data 
is provided in Table A.II.13. Direct emissions and associated efficiency 
data for Natural Gas Combined Cycle (NGCC) with and without CCS 
is from Singh et  al. (2011b). Minimum and maximum numbers are 
from Corsten et  al. (2013, Table 4), with an assumed direct / indirect 
share of 40 % and 60 %. For pulverized coal, Corsten et  al. (2013, 
Table 5) reports characterized impacts, with direct and indirect emis-
sion shares for pulverized coal with and without CCS. For Integrated 
Gasification Combined Cycle (IGCC), calculations were performed by 
Hertwich et al. (2013) based on data obtained from NETL (2010a; d). 
For oxyfuel, the best estimate is based on a 90 % separation efficiency 
from Singh et al. (2011a) with the range assuming higher separation 
efficiency as indicated by Corsten et al. (2013). Ranges are based on 
Corsten et  al. (2013) also considering the ranges reported by NETL 
(2010a; b; c; d; e). Triangular distributions were used in the Monte 
Carlo simulation. The contribution analysis shown in Figure 7.6 is 
based on Singh et al. (2011a) with adjustments to the higher fugitive 
emissions based on Burnham (2012) and lower average efficiencies 
and hence direct emissions for gas fired power as obtained from the 
distributions above.

Table A.II.12 | Methane emission (gCH4 / MJLHV) from coal and gas production (Burnham et al., 2012). Based on the minimum, mean, and maximum values provided by Burnham, 
the parameters μ and σ of a lognormal distribution were estimated. Coal is the weighted average of 60 % from underground mines and 40 % from surface mines.

Min Mean Max μ σ

Underground coal mining 0.25 0.34 0.45 – 1.09 0.147

Surface coal mining 0.025 0.05 0.068 – 3.09 0.291

Natural gas production 0.18 0.52 1.03 – 0.75 0.432

Table A.II.13 | Efficiency ranges assumed in power generation assumed in the calculation of fugitive emissions. The best estimate plant efficiency are based on NETL (NETL, 2010a; 
b; c; d; e) with ranges based (Singh et al., 2011a; Corsten et al., 2013). Note that the min and max efficiencies are not derived from the literature and were not used to calculate 
direct emissions; rather, they are used only to establish the possible range of fugitive emissions. 

Direct emissions (tCO2eq / MWh) Efficiency (% based on LHV) Infrastructure & Supplies (tCO2eq / MWh)

Technology Min Average Max Max Average Min Min Average Max

Gas — Single Cycle 0.621 0.667 0.706 33.1 30.8 29.1 0.001 0.002 0.002

Coal — average 0.913 0.961 1.009 33.3 35.0 36.8 0.010 0.011 0.013

Gas — average 0.458 0.483 0.507 39.9 42.0 44.1 0.001 0.002 0.003

Gas — Combined Cycle 0.349 0.370 0.493 59.0 55.6 41.7 0.001 0.002 0.002

Coal — PC 0.673 0.744 0.868 47.6 43.0 36.9 0.008 0.010 0.012

Coal — IGCC 0.713 0.734 0.762 44.9 43.6 42.0 0.003 0.004 0.006

CCS — Coal — Oxyfuel 0.014 0.096 0.110 35 30.2 27 0.014 0.017 0.023

CCS — Coal — PC 0.095 0.121 0.138 32 29.4 27 0.022 0.028 0.036

CCS — Coal — IGCC 0.102 0.124 0.148 34 32.3 27 0.008 0.010 0.013

CCS — Gas — Combined Cycle 0.030 0.047 0.098 49 47.4 35 0.007 0.009 0.012
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A log-normal distribution does not have well-defined maximum and 
minimum values. The range in Figures 7.6 and 7.7 hence shows the 1st 
to 99th percentile.

A.II.9.3.2	 Nuclear power

The data on nuclear power was taken from Lenzen (2008) and Warner 
and Heath (2012). There is no basis in the literature as far as we know 
to distinguish between 2nd and 3rd generation power plants.

A.II.9.3.3	 Renewable energy

Concentrated solar power: The data range is based on both the 
assessments conducted for the International Resource Panel (Hertwich 
et al., 2013) work based on the analysis of Viebahn et al. (2011), Bur-
khardt et al. (2011), Whitaker et al. (2013), and the review of Burkhardt 
et al. (2012).

Photovoltaic power: Ranges are based largely on the reviews of Hsu 
et al. (2012) and Kim et al. (2012). The analysis of newer thin-film tech-
nologies analyzed in Hertwich et al. (2013) indicates that recent tech-
nical progress has lowered emissions.

Wind power: The data is based on the review of Arvesen and Hert-
wich (2012) and has been cross-checked with Dolan and Heath (2012) 
and Hertwich et al. (2013).

Ocean Energy: There have been very few LCAs of ocean energy 
devices. The numbers are based on the Pelamis (Parker et  al., 2007) 
and Oyster wave energy device (Walker and Howell, 2011), the SeaGen 
tidal turbine (Douglas et al., 2008; Walker and Howell, 2011), and tidal 
barrages (Woollcombe-Adams et al., 2009; Kelly et al., 2012). Based on 
these available assessments, tidal turbines have the lowest GHG emis-
sions and tidal barrages the highest.

Hydropower: The indirect emissions of hydropower are largely associ-
ated with fossil fuel combustion in the construction of the plant. The 
data presented here is based on SRREN (Kumar et al., 2011). The data 
was cross-checked with a recent review (Raadal et al., 2011) and anal-
ysis (Moreau et al., 2012). 

The issue of biogenic emissions resulting from the degradation of 
biomass in reservoirs had been reviewed in SRREN, however, without 
providing estimates of the size of biogenic GHG emissions per kWh. 
Please note that only CH4 emissions are included in the analysis. N2O 
emissions have not been broadly investigated, but are assumed to be 
small (Demarty and Bastien, 2011). Carbon dioxide emissions can be 
substantial, but these emissions represent carbon that would probably 
have oxidized elsewhere; it is not clear what fraction of the resulting 
CO2 would have entered the atmosphere (Hertwich, 2013). We have 
hence excluded biogenic CO2 emissions from reservoirs from the 

assessment. The distribution of biogenic methane emissions comes 
from an analysis of methane emissions per kWh of power generated 
by Hertwich (2013) based on literature data collected and reviewed 
by Barros et al. (2011). Independent estimates based on recent empiri-
cal studies (Maeck et al., 2013) come to similar results. For the maxi-
mum number (2 kg CO2eq / kWh), a specific power station analyzed 
by Kemenes et al. (2007) was chosen; as it is not clear that the much 
higher value from the 99th percentile of the distribution determined by 
Hertwich (2013) is really realistic.

Biomass: Life-cycle direct global climate impacts of bioenergy come 
from the peer-reviewed literature from 2010 to 2012 and are based 
on a range of electric conversion efficiencies of 27 – 50 %. The category 
“Biomass — dedicated and crop residues” includes perennial grasses, 
like switchgrass and miscanthus, short rotation species, like willow 
and eucalyptus, and agricultural byproducts, like wheat straw and corn 
stover. “Biomass — forest wood” refers to forest biomass from long 
rotation species in various climate regions. Ranges include global cli-
mate impacts of CO2 emissions from combustion of regenerative bio-
mass (i. e., biogenic CO2) and the associated changes in surface albedo 
following ecosystem disturbances, quantified according to the IPCC 
framework for emission metrics (Forster et al., 2007) and using 100-
year GWPs as characterization factors (Cherubini et al., 2012). 

These impacts are site-specific and generally more significant for long 
rotation species. The range in “Biomass — forest wood” is representa-
tive of various forests and climates, e. g., aspen forest in Wisconsin (US), 
mixed forest in Pacific Northwest (US), pine forest in Saskatchewan 
(Canada), and spruce forest in Southeast Norway. In areas affected 
by seasonal snow cover, the cooling contribution from the temporary 
change in surface albedo can be larger than the warming associated 
with biogenic CO2 fluxes and the bioenergy system can have a net neg-
ative impact (i. e., cooling). Change in soil organic carbon can have a 
substantial influence on the overall GHG balance of bioenergy systems, 
especially for the case “Biomass — dedicated and crop residues”, but 
are not covered here due to their high dependence on local soil condi-
tions and previous land use (Don et al., 2012; Gelfand et al., 2013).

Additional information on the LCA of bioenergy alternatives is pro-
vided in Section 11.A.4.

A.II.10	 Scenario data

A.II.10.1	 Process

The AR5 Scenario Database comprises 31 models and 1,184 scenar-
ios, summarized in Table A.II.14. In an attempt to be as inclusive as 
possible, an open call for scenarios was made through the Integrated 
Assessment Modeling Consortium (IAMC) with approval from the IPCC 
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Table A.II.15 | Model inter-comparison exercises generating transformation pathway scenarios included in AR5 Scenario Database.

Model Intercomparison 
Exercise

Year Completed

Number of 
Models in WGIII 

AR5 scenario 
database

Number of 
Scenarios in WGIII 

AR5 scenario 
database

Areas of Harmonization Lead Institution Overview Publication

ADAM (Adaptation 
and Mitigation 
Strategies — Supporting 
European Climate Policy)

2009 1 15 Technology availability, 
Mitigation policy

Potsdam Institute for Climate 
Impact Research (PIK)

(Edenhofer et al., 2010)

AME (Asian Modeling 
Exercise)

2012 16 83 Mitigation policy Pacific Northwest National 
Laboratories (PNNL)

(Calvin et al., 2012)

AMPERE (Assessment 
of Climate Change 
Mitigation Pathways 
and Evaluation of 
the Robustness of 
Mitigation Cost 
Estimates)

2013 11 378 Technology availability; 
mitigation policy; 
GDP; population

Potsdam Institute for Climate 
Impact Research (PIK)

AMPERE2:

(Riahi et al., 2014)

AMPERE3:

(Kriegler et al., 2014a)

EMF 22 (Energy 
Modeling Forum 22)

2009 7 70 Technology availability, 
mitigation policy

Stanford University (Clarke et al., 2009)

EMF 27 (Energy 
Modeling Forum 27)

2013 16 362 Technology availability, 
mitigation policy

Stanford University (Blanford et al., 2014a; 
Krey et al., 2014; 
Kriegler et al., 2014c)

LIMITS (Low Climate 
Impact Scenarios and 
the Implications of 
required tight emissions 
control strategies)

2014 7 84 Mitigation policies Fondazione Eni Enrico 
Mattei (FEEM)

(Kriegler et al., 2014b; 
Tavoni et al., 2014)

POeM (Policy Options 
to engage Emerging 
Asian economies in a 
post-Kyoto regime) 

2012 1 4 Mitigation policies Chalmers University 
of Technology

(Lucas et al., 2013)

RECIPE (Report on 
Energy and Climate 
Policy in Europe)

2009 2 18 Mitigation policies Potsdam Institute for Climate 
Impact Research (PIK)

(Luderer et al., 2012a)

RoSE (Roadmaps 
towards Sustainable 
Energy futures)

2013 3 105 Mitigation policy; GDP 
growth; population growth, 
fossil fuel availability

Potsdam Institute for Climate 
Impact Research (PIK)

(Bauer et al., 2013; De 
Cian et al., 2013; Calvin 
et al., 2014; Chen et al., 
2014; Luderer et al., 2014)

WGIII Technical Support Unit. To be included in the database, four crite-
ria had to be met. First, only scenarios published in the peer-reviewed 
literature could be considered, per IPCC protocol. Second, the scenario 
had to contain a minimum set of required variables and some basic 
model and scenario documentation (meta data) had to be provided. 
Third, only models with at least full energy system representation were 
considered given that specific sectoral studies were assessed in Chap-
ters 8 – 11. Lastly, the scenario had to provide data out to at least 2030. 
Scenarios were submitted by entering the data into a standardized 
data template that was subsequently uploaded to a database system7 
administered by the International Institute of Applied System Analysis 
(IIASA).

7	 https: /  / secure.iiasa.ac.at / web-apps / ene / AR5DB

A.II.10.2	 Model inter-comparison exercises

The majority of scenarios (about 95 %) included in the database were 
generated as part of nine model inter-comparison exercises, summa-
rized in Table A.II.15. The Energy Modeling Forum (EMF), established at 
Stanford University in 1976, is considered one of the first major efforts 
to bring together modelling teams for the purpose of model inter-com-
parison. Since its inception, EMF and other institutions have worked on 
a large number of model inter-comparison projects with topics rang-
ing from energy and the economy, to natural gas markets, to climate 
change mitigation strategies. Recent model inter-comparison studies 
have focused on, for example, delayed and fragmented mitigation, 
effort sharing, the role of technology availability and energy resources 
for mitigation and have looked into the role of specific regions (e. g., 
Asia) in a global mitigation regime. 

https://secure.iiasa.ac.at/web-apps/ene/AR5DB
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A.II.10.3	 Classification of scenarios

The analysis of transformation pathway or scenario data presented in 
Chapters 1, 6, 7, 8, 9, 10 and 11 uses a common classification scheme 
to distinguish the scenarios along several dimensions. The key dimen-
sions of this classification are:

•	 Climate Target (determined by 2100 CO2eq concentrations and 
radiative forcing or carbon budgets) 

•	 Overshoot of 2100 CO2eq concentration or radiative forcing lev-
els

•	 Scale of deployment of carbon dioxide removal or net negative 
emissions

•	 Availability of mitigation technologies, in particular carbon diox-
ide removal (CDR) or negative emissions technologies

•	 Policy configuration, such as immediate mitigation, delayed miti-
gation, or fragmented participation

Table A.II.16 summarizes the classification scheme for each of these 
dimensions, which are discussed in more detail in the following sec-
tions. 

A.II.10.3.1	 Climate category 

Climate target outcomes are classified in terms of radiative forcing as 
expressed in CO2-equivalent concentrations (CO2eq). Note that in addi-
tion to CO2eq concentrations, also CO2eq emissions are used in the 
WGIII AR5 to express the contribution of different radiative forcing 
agents in one metric. The CO2-equivalent concentration metric refers to 
the hypothetical concentration of CO2 that would result in the same 
instantaneous radiative forcing as the total from all sources, includ-

ing aerosols8. By contrast, the CO2eq emissions metric refers to a sum 
of Kyoto GHG emissions weighted by their global warming potentials 
(GWPs, see Chapter 3, Section 3.9.6) as calculated in the SAR (IPCC, 
1995a), for consistency with other data sources. It is important to note 
that these are fundamentally different notions of ‘CO2-equivalence’. 

There are several reasons to use radiative forcing as an indicator for 
anthropogenic interference with the climate system and — in the case 
of climate policy scenarios — mitigation stringency: 1) it connects well 
to the Representative Concentration Pathways (RCPs) used in CMIP5 
(see WGI AR5), 2) it is used as a definition of mitigation target in many 
modelling exercises, 3) it avoids problems introduced by the uncer-
tainty in climate sensitivity, and 4) it integrates across different radia-
tive forcing agents. These advantages outweigh some difficulties of the 
radiative forcing approach, namely that not all model scenarios in the 
WGIII AR5 Scenario Database fully represent radiative forcing, and that 
there is still substantial natural science uncertainty involved in convert-
ing emissions (a direct output of all models investigated in Chapter 6) 
into global radiative forcing levels. 

To rectify these difficulties, the following steps were taken: 

1.	 The emissions of all scenarios in the WGIII AR5 Scenario Database 
(see following bullets for details) were run through a single cli-
mate model MAGICC6.3 (where applicable) to establish compa-
rability between the concentration, forcing, and climate outcome 
between scenarios. This removes natural science uncertainty due 
to different climate model assumptions in integrated models. The 
MAGICC output comes with an estimate of parametric uncer-

8	 More technically speaking, CO2-equivalent concentrations can be converted to 
forcing numbers using the formula log(CO2eq  /  CO2_preindustrial)  /  log(2) · 
RF(2 x CO2) with RF(2 x CO2) = 3.7 W / m2 the forcing from a doubling of pre
industrial CO2 concentration. 

Table A.II.16 | Scenario classifications.

Name Climate Category Carbon Budget 2050 and 2100 Category
Negative 
Emissions 
Category

Overshoot 
Category

Technology 
Category

Policy Category

Binning criterion Radiative forcing 
(total or Kyoto), 
CO2 budget

Cumulative CO2 
emissions budget 
to 2100

Cumulative CO2 
emissions budget 
to 2050

Maximum annual net 
negative emissions

Overshoot of 2100 
forcing levels

Availability of 
negative emissions 
and other technology

Scenario definitions 
in Model 
Intercomparison 
Projects (MIPs)

# of classes 7 classes (1 – 7) 7 classes (1 – 7) 7 classes (1 – 7) 2 classes (N1, N2) 2 classes (O1, O2) 4 classes (T0 – T3) 11 classes (P0 – P7, 
P1+, P3+, P4+)

Notes Extended to models 
that do not report 
forcing based on CO2 

budgets. Extrapolated 
to a subset of 
2050 scenarios. 

Classes for 2050 
budgets cannot 
be unambiguously 
mapped to climate 
outcomes and 
thus overlap 

Only for scenarios 
that run out to 2100

Only for models that 
run out to 2100 
and report full or 
Kyoto forcing
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tainty within the MAGICC framework (Meinshausen et al., 2009, 
2011a; b). Calculated MAGICC radiative forcing values are mean 
values given these uncertainties. MAGICC closely reflects the cli-
mate response of General Circulation Model (GCM) ensembles 
such as studied in CMIP5, and therefore can be considered a 
useful yardstick for measuring and comparing forcing outcomes 
between scenarios (Schaeffer et  al., 2013). Emissions scenarios 
were harmonized to global inventories in 2010 to avoid a per-
turbation of climate projections from differences in reported and 
historical emissions that were assumed for the calibration of 
MAGICC (Schaeffer et al., 2013). The scaling factors were chosen 
to decline linearly to unity in 2050 to preserve as much as possible 
the character of the emissions scenarios. In general, the difference 
between harmonized and reported emissions is very small. The 
MAGICC runs were performed independently of whether or not a 
model scenario reports endogenous climate information, and both 
sets of information can deviate. As a result, MAGICC output may 
no longer fully conform to ‘nameplate’ targets specified in the 
given scenarios and as originally assessed by the original authors. 
Nevertheless, given the benefit of comparability both between 
AR5 scenarios and with WGI climate projections, scenarios were 
classified based on radiative forcing derived from MAGICC. 

2.	 As a minimum requirement to apply MAGICC to a given emis-
sions scenario, CO2 from the fossil fuel and industrial (FF&I) sec-
tor, CH4 from FF&I and land use sectors, and N2O from FF&I and 
land use sectors needed to be reported. In case of missing land-
use related CO2 emissions the average of the RCPs was used. 
If fluorinated gas (F-gas), carbonaceous aerosols and / or nitrate 
emissions were missing, those were added by interpolating data 
from RCP2.6 and RCP8.5 on the basis of the energy-related CO2 
emissions of the relevant scenario vis-à-vis these RCPs. If scenar-
ios were part of a model intercomparison project and gases, or 
forcers were missing, data was used from what was diagnosed 
as a “central” model for the same scenario (Schaeffer et  al., 
2013). As a minimum requirement to derive not only Kyoto forc-
ing, but also full anthropogenic forcing, sulfur emissions in addi-
tion to CO2, CH4, and N2O needed to be reported. Forcing from 
mineral dust and land use albedo was fixed at year-2000 values. 

3.	 For the remaining scenarios, which only run to 2050 or that 
do not fulfill the minimum requirements to derive Kyoto forc-
ing with MAGICC, an auxiliary binning based on cumulative 
CO2 emissions budgets was implemented. Those scenarios came 
from models that only represent fossil fuel and industry emis-
sions or only CO2 emissions. The categorization of those sce-
narios is discussed below and includes a considerable amount 
of uncertainty from the mapping of CO2 emissions budgets to 
forcing outcomes. The uncertainty increases significantly for 
scenarios that only run to 2050. In many cases, 2050 scenarios 
could only be mapped to the union of two neighbouring forcing 
categories given the large uncertainty. 

The CO2-equivalent concentrations were converted to full anthropo-
genic forcing ranges by using the formula in footnote 8, assuming 
CO2_preindustrial = 278 ppm and rounding to the first decimal. All sce-
narios from which full forcing could be re-constructed from MAGICC 
were binned on this basis (Table A.II.17). Those scenarios that only 
allowed the re-construction of Kyoto forcing were binned on the basis 
of the adjusted Kyoto forcing scale that was derived from a regression 
of Kyoto vs. full forcing on the subset of those scenarios that reported 
both quantities. Thus, the binning in terms of Kyoto forcing already 
entails an uncertainty associated with this mapping. 

We note the following: 

•	 CO2 equivalent and forcing numbers refer to the year 2100. Tem-
porary overshoot of the forcing prior to 2100 can occur. The over-
shoot categories (see Section A.II.10.3.3) can be used to further 
control for overshoot.

•	 No scenario included in the WGIII AR5 Scenario Database showed 
lower forcing than 430 ppm CO2eq and 2.3 W / m2, respectively, so 
no lower climate category was needed.

•	 When labeling the climate categories in figures and text, the CO2-
equivalent range should be specified, e. g., 430 – 480 ppm CO2eq for 
Category 1. If neighbouring categories are lumped into one bin, 
then the lower and upper end of the union of categories should 
be named, e. g., 430 – 530 ppm CO2eq for Categories 1 & 2 or 
> 720 ppm CO2eq for Categories 6 and 7.

Table A.II.17 | Climate forcing classes (expressed in ppm CO2eq concentration levels).

Category
Forcing categories 

(in ppm CO2eq)
Full anthropogenic forcing 

equivalent [W / m2]
Kyoto forcing 

equivalent [W / m2]
Centre RCP (W / m2)

1 430 – 480 2.3 – 2.9 2.5 – 3.1 455 2.6

2 480 – 530 2.9 – 3.45 3.1 – 3.65 505  -

3 530 – 580 3.45 – 3.9 3.65 – 4.1 555 (3.7)

4 580 – 650 3.9 – 4.5 4.1 –  4.7
650 4.5

5 650 – 720 4.5 – 5.1 4.7 – 5.3

6 720 – 1000 5.1 – 6.8 5.3 – 7.0 860 6

7 > 1000   > 6.8  > 7.0  - 8.5
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A.II.10.3.2	 Carbon budget categories

The classification of scenarios in terms of cumulative CO2 emissions bud-
gets is mainly used as an auxiliary binning to map scenarios that do not 
allow the direct calculation of radiative forcing (see above) to forcing 
categories (Tables A.II.18 and A.II.19). However, it is also entertained as a 
separate binning across scenarios for diagnostic purposes. The mapping 
between full anthropogenic forcing and CO2 emissions budgets has been 
derived from a regression over model scenarios that report both quanti-
ties (from the models GCAM, MESSAGE, IMAGE, MERGE, REMIND) and 
is affected by significant uncertainty (Figure A.II.8). This uncertainty is the 
larger the shorter the time span of cumulating CO2 emissions is. Due to 
the availability of negative emissions, and the inclusion of delayed action 
scenarios in some studies, the relationship of 2011 – 2050 CO2 emissions 
budgets and year 2100 radiative forcing was weak to the point that a 
meaningful mapping was hard to identify (Figure A.II.9). As a remedy, 
a mapping was only attempted for 2050 scenarios that do not include 
a strong element of delayed action (i. e., scenario policy classes P0, P1, 
P2 and P6; see Section A.II.10.3.6), and the mapping was differentiated 
according to whether or not negative emissions would be available 
(scenario technology classes T0 – T3, see Section A.II.10.3.5). As a result 
of the weak relationship between budgets and radiative forcing, 2050 
CO2 emissions budget categories could only be mapped to the union of 
neighbouring forcing categories in some cases (Table A.II.19). 

CO2 emissions numbers refer to total CO2 emissions including emis-
sions from the AFOLU sector. However, those models that only reported 

CO2 fossil fuel and industrial emissions were also binned according to 
this scheme. This can be based on the simplifying assumption that net 
land use change emissions over the cumulation period are zero. 

Table A.II.18 | 2011 – 2100 emissions budget binning (rounded to 25 GtCO2).

2100 Emissions Category Cumulated 2011 – 2100 CO2 emissions [GtCO2] Associated Climate forcing category Forcing (in ppm CO2eq)

1 350 – 950 1 430 – 480

2   950 – 1500 2 480 – 530

3 1500 – 1950 3 530 – 580

4 1950 – 2600 4 580 – 650

5 2600 – 3250 5 650 – 720

6 3250 – 5250 6 720 – 1000

7 > 5250 7 > 1000

Table A.II.19 | 2011 – 2050 emissions budget binning (rounded to 25 GtCO2).

2050 Emissions Category Cumulated 2011 – 2050 CO2 emissions [GtCO2]
Associated Climate forcing category if 

negative emissions are available  
(Classes T0 or T2 below)

Associated Climate forcing category if 
negative emissions are not available  

(Classes T1 or T3 below)

1 < 825 1 1

2 825 – 1125 1 – 2 2

3 1125 – 1325 2 – 4 3 – 4 

4 1325 – 1475 3 – 5 4 – 5 

5 1475 – 1625 4 – 6 5 – 6 

6 1625 – 1950 6 6

7 > 1950 7 7

Figure A.II.8 | Regression of radiative forcing against 2011 – 2100 cumulative CO2 
emissions. Scenarios of full forcing models GCAM, MERGE, MESSAGE, REMIND and 
IMAGE were used for this analysis. Regression was done separately for each model, and 
resulting budget ranges averaged across models.
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A.II.10.3.3	 Overshoot category 

The overshoot categorization shown in Table A.II.20 applies to the 
maximum overshoot of the 2100 radiative forcing level before 2100. 
The binning is only applied to models running until 2100. If full radia-
tive forcing was not available, Kyoto forcing was used. If radiative forc-
ing information was not available, no assignment was made.

A.II.10.3.4	 Negative emissions category

The negative emissions categories apply to the maximum amount of 
net negative CO2 emissions (incl. land use) in any given year over the 
21st century. Scenarios with very large annual fluxes of negative emis-
sions are also able to overshoot strongly, because the overshoot can 
be compensated with large net negative emissions within a relatively 
short period of time. Only a small number of scenarios show net nega-
tive emissions larger than 20 GtCO2 / yr, which was used to separate 
scenarios with large negative emissions from those with bounded neg-
ative emissions (Table A.II.21). 

A.II.10.3.5	 Technology category

The technology dimension of the categorization scheme indicates the 
technology availability in a given scenario. We identify two key factors: 

1.	 the availability of negative emissions or CDR technologies that 
can be either confined by restrictions stipulated in the scenario 
definition or by the fact that the model does not represent nega-
tive emissions technologies, and 

2.	 the restricted use of the portfolio of mitigation technologies 
that would be available in the model with default technology 
assumptions. 

Combining these two factors lead to four distinct technology catego-
ries as shown in Table A.II.22.
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Figure A.II.9 | Regression of radiative forcing against 2011 – 2050 CO2 emissions. Red lines show mean results of fit and depend on whether (left panel) or not (right panel) nega-
tive emissions are available. Green lines show harmonized bins between both categories for the mapping in Table A.II.19.

Table A.II.20 | Overshoot categories.

Small Overshoot Large Overshoot

< 0.4 W / m2 > 0.4 W / m2

O1 O2

Table A.II.21 | Negative emissions categories.

Bounded net negative emissions Large net negative emissions

< 20 GtCO2 / yr > 20 GtCO2 / yr

N1 N2*

*	 The GCAM 3.0 scenario EMF27 – 450-FullTech came in at – 19.96 GtCO2 / yr and 
was also included in class N2.

Table A.II.22 | Technology categories.

No restriction 
No negative 

emissions model

Restriction, but 
with negative 

emissions

No negative 
emissions and 

(other) restrictionsNeg. Emissions

T0 T1 T2 T3
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Note that some scenarios improve technology performance over 
the default version (e. g., larger biomass availability, higher final 
energy intensity improvements, or advanced  /  expanded technol-
ogy assumptions). These cases were not further distinguished and 
assigned to T0 and T1, if no additional technology restrictions 
existed.

A.II.10.3.6	 Policy category

Policy categories are assigned based on scenario definitions in the 
study protocols of model intercomparison projects (MIPs). The policy 
categories summarize the type of different policy designs that were 
investigated in recent studies (Table A.II.23). We stress that the long-
term target level (where applicable) is not part of the policy design 
categorization. This dimension is characterized in terms of climate 
categories (see above). Individual model studies not linked to one of 
the larger MIPs were assigned to baseline (P0) and immediate action 
(P1) categories where obvious, and otherwise left unclassified. The 
residual class (P7) contains the G8 scenario from the EMF27 study 
(Table A.II.15), with ambitious emissions caps by Annex  I countries 
(starting immediately) and Non-Annex  I countries (starting after 
2020), but with a group of countries (fossil resource owners) never 
taking a mitigation commitment over the 21st century. The RECIPE 
model intercomparison project’s delay scenarios start acting on a 
global target already in 2020, and thus are in between categories 
P1 and P2. P0 does not include climate policy after 2010 (it may 
or may not include Kyoto Protocol commitments until 2012), while 
P1 typically assumes full ‘when’, ‘where’ and ‘what’ flexibility of 
emissions reductions in addition to immediate action on a target 
(so called idealized implementation scenarios). The scenario class P6 
characterizes the case of moderate fragmented action throughout 

the 21st century, without aiming at a long term global target, usu-
ally formulated as extrapolations of the current level of ambition. 
Policy categories P2 to P4 describe variants of adopting a global tar-
get or a global carbon price at some later point in the future. With 
the important exception of the AMPERE2 study, all scenarios in the 
P2-P4 class assume a period of regionally fragmented action prior 
to the adoption of a global policy regime. For further details of the 
scenario policy categories P2-P6, see the individual studies listed in 
Table A.II.15.

For the policy categories P1 (Idealized), P3 (Delay 2030), and P4 
(Accession to Price Regime) subcategories P1+, P3+ and P4+ 
respectively exist for which in addition to climate policy supplemen-
tary policies (Supp.)(e. g., infrastructure polices) that are not part 
of the underlying baseline scenario have been included. These cat-
egories have been assigned to the climate policy scenarios of the 
IMACLIM v1.1 model from the AMPERE project to distinguish them 
from similar scenarios (e. g., EMF27) where these supplementary 
policies were not included and therefore policy costs are generally 
higher.

A.II.10.3.7	 Classification of baseline scenarios

Baseline scenarios used in the literature are often identical or at least 
very close for one model across different studies. However, in some 
exercises, characteristics of baseline scenarios, such as population and 
economic growth assumptions, are varied systematically to study their 
influence on future emissions, energy demand, etc. Table A.II.24 below 
provides an overview of unique Kaya-factor decompositions of base-
line scenarios in the AR5 scenario database. The results are shown in 
Figures 6.1 and 6.2 in Chapter 6.

Table A.II.23 | Policy categories.

Category  Target adoption Staged accession Long-term frag  /  Free rider MIPs

P0 Baseline None No N / A All

P1 Idealized Immediate No No  /  No All

P1+ Idealized +  
Supp. Policies

Immediate No No  /  No AMPERE2, AMPERE3

P2 Delay 2020 Model year after 2020 No No  /  No RoSE, LIMITS 

P3 Delay 2030 Model year after 2030 No No  /  No RoSE, LIMITS, AMPERE2

P3+ Delay 2030 + 
Supp. Policies

Model year after 2030 No No  /  No AMPERE2

P4 Accession to Price Regime None Yes (2030 – 2050) No  /  No AMPERE3

P4+ Accession to Price Regime + 
Supp. Policies

None Yes (2030 – 2050) No  /  No AMPERE3

P5 Accession to Target Yes (starting 2010) Yes (2030 – 2070) No  /  No EMF22

P6 Fragmented Ref Pol No N / A Yes  /   
Yes (EMF27) —  
No (Other)

EMF27, RoSE, LIMITS, AMPERE3

P7 Other cases N / A N / A N / A EMF27, RECIPE
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Table A.II.24 | Classification of unique Kaya factor projections in the baseline scenario literature.

Study
Models Contributing 

Global Results

Population Per Capita Income Energy Intensity Carbon Intensity

Harmonized Unharmonized Harmonized Unharmonized Unharmonized Unharmonized

High Default   High Default Low   Default Fast  

ADAM 1     1       1 1   3

AME 16   16   16 15   15

AMPERE 11   11     10 10 10 9 65

EMF22 7   7   1 7 8   8

EMF27 16   16   31 16 15 119

GEA 1   1   0 0   1

LIMITS 7   7   7 7   7

POeM 1   1   1 1   1

RECIPE 1   1   1 1   1

RCP 8.5 1 1     2   1   1

RoSE 3 3 3   5 3 7   15   31

Other 2     2       2 1   1

67 4 14 52 5 13 10 76 76 24 253

 = 70  = 104  = 100

Notes:
All AMPERE scenarios harmonized population along a default trajectory
RoSE specified two harmonized population trajectories: default and high
RCP 8.5 was based on an intentionally high population trajectory
In all other cases, no guidance was given regarding population harmonization
AMPERE scenarios specified a default harmonization of GDP
One model in AMPERE (IMAGE) did not follow GDP harmonization, thus it was classified as unharmonized
AMPERE WP2 (9 of 11 participated) specified an alternative low energy intensity baseline with unharmonized implications for per capita income
One model in EMF22 (MERGE) included an alternative baseline with intentionally low per capita income
EMF27 specified an alternative low energy intensity baseline (15 of 16 ran it) with unharmonized implications for per capita income
ROSE specified several alternative GDP baselines, some run by all three models, others by only one or two
In all other cases, no guidance was given regarding per capita income or GDP harmonization
One study included a model not reporting data for GDP: GEA (MESSAGE)
Three studies included a model not reporting data for total primary energy: AME (Phoenix); AMPERE (GEM-E3); and Other (IEEJ)
No study successfully harmonized energy demand, thus scenarios are classified as default if a low energy intensity baseline was not specifically indicated
Alternative supply technology scenarios generally do not affect energy intensity, thus only default supply technology scenarios are classified

A.II.10.4	 Comparison of integrated and 
sectorally detailed studies 

In Section 6.8 of this report, but also in a number of other sections, 
integrated studies included in the AR5 Scenario Database that is 
described in Sections A.II.10.1 to A.II.10.3 above are compared to sec-
torally detailed studies assessed in Chapters 8, 9, and 10 that deal with 
the end-use sectors transport, buildings and industry respectively. Table 

A.II.25 provides an overview of the sectorally detailed studies that are 
included in this comparison. It should be noted that not all studies pro-
vide the data necessary to derive final energy demand reduction com-
pared to baseline and low-carbon fuel shares as, for example, shown in 
Figure 6.37 and 6.38. In addition, some of the sectorally detailed stud-
ies do not cover the entire sector, but restrict themselves to the most 
important services within a sector (e. g., space heating and cooling and 
hot water provision in the buildings sector).
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Table A.II.25 | Sectorally detailed energy end-use studies compared to transformation pathways.

Sector Study (Literature Reference) Scenario Name Scenario Type

Transport
(Ch. 8)

World Energy Outlook 2012 
(IEA, 2012e)

New Policies Base

450 Scenario Policy

Energy Technology Perspectives 2008 
(IEA, 2008)

Baseline Base

ACT Map Policy

BLUE Map Policy

BLUE conservative Policy

BLUE EV Policy

BLUE FCV Policy

Energy Technology Perspectives 2010 
(IEA, 2010b)

Baseline Base

BlueMap Policy

Energy Technology Perspectives 2012
(IEA, 2012f)

4DS Policy

2DS Policy

Global Energy Assessment 
(Kahn Ribeiro et al., 2012)

REF Base

GEA-Act Policy

GEA-Supply Policy

GEA-Mix Policy

GEA-Efficiency Policy

World Energy Technology Outlook 2050 
(EC, 2006)

Hydrogen Scenario Policy

World Energy Council 2011 
(WEC, 2011)

Freeway Base

Tollway Policy

Asia / World Energy Outlook 2011 
(IEEJ, 2011)

Enhanced Development Scenario Policy

Buildings
(Ch. 9)

World Energy Outlook 2010 
(IEA, 2010c)

Current Policies Base

450 Scenario Policy

Energy Technology Perspectives 2010 
(IEA, 2010b)

Baseline Base

BlueMap Policy

3CSEP HEB 
(Ürge-Vorsatz et al., 2012)

Frozen efficiency Base

Deep efficiency Policy

Harvey  
(Harvey, 2010)

High Slow efficiency no heat pump Base

High Fast efficiency with heat pump Policy

The Energy Report 
(WWF / Ecofys / OMA, 2011; Deng et al., 2012)

Baseline Base

The Energy Report Policy

Industry
(Ch. 10)

Energy Technology Perspectives 2012 
(IEA, 2012f)

6DS Low-demand Base

6DS High-demand Base

4DS Low-demand Policy

4DS High-demand Policy

2DS Low-demand Policy

2DS High-demand Policy

Energy Technology Transitions for Industry 
(IEA, 2009)

BLUE low Policy

BLUE high Policy

Global Energy Assessment 
(Banerjee et al., 2012)

Energy Efficient Scenario Policy

Energy [R]evolution 2012 
(GWEC et al., 2012)

Reference Scenario Base

Energy [R]evolution Policy

The Energy Report 
(WWF / Ecofys / OMA, 2011; Deng et al., 2012)

The Energy Report Policy
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A.III.1	 Introduction

Annex III contains data on technologies and practices that have been 
collected to produce a summary assessment of the potentials and costs 
of selected mitigation options in various sectors as displayed in Fig-
ure 7.7, Table 8.3, Figures 10.7, 10.8, 10.9, 10.10, 10.19, 10.21, Figure 
11.16 as well as in corresponding figures in the Technical Summary.

The nature and quantity of mitigation options, as well as data avail-
ability and quality of the available data, vary significantly across 
sectors. Even for largely similar mitigation options, a large variety of 
context-specific metrics is used to express their cost and potentials 
that involve conversions of input data into particular output formats. 
For the purpose of the Working Group III (WGIII) contribution to the 
Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment 
Report (AR5), a limited but still diverse set of sector-specific metrics is 
used to strike a balance between harmonization of approaches across 
sectors and adequate consideration of the complexities involved.

Mitigation potentials are approached via product-specific or service-
specific emission intensities, i. e., emissions per unit of useful outputs, 
which are as diverse as electricity, steel, and cattle meat. Mitigation 
potentials on a product / service level can be understood as the poten-
tial reduction in specific emissions that can result from actions such as 
switching to production processes that cause lower emissions for oth-
erwise comparable products1 and reducing production / consumption of 
emission-intensive products.

Mitigation costs are approached via different levelized cost metrics, 
which share a common methodological basis but need to be inter-
preted in very different ways. A detailed introduction to the metrics 
used can be found in the Metrics and Methodology (M&M) Annex 
(Section A.II.3.1). All of these cost metrics are derived under specific 
conditions that vary in practice and, hence, need to be set by assump-
tion. These assumptions are not always clear from the literature, where 
such metrics are presented. Hence, comparison of the same metric 
taken from different studies is not always possible. For this reason, in 
the AR5 these metrics are generally re-calculated under specified con-
ditions, e. g., with respect to weighted average cost of capital, based 
on underlying input parameters that are less sensitive to assump-
tions. Sensitivities to assumptions made in the AR5 are made explicit. 
In several cases, however, the availability of data on the parameters 
needed to re-calculate the relevant cost metric is very limited. In such 
cases, expert judgment was used to assess information on costs taken 
directly from the literature. 

1	 Note that comparability of products is not always given even for seemingly similar 
ones. For instance, in the case of electricity, the timing of production is crucial for 
the value of the product and reduces the insights that can be derived from simple 
comparisons of the metrics used here.

More detail on sector-specific metrics, the respective input data and 
assumptions used as well as the conversions required is presented in 
the sector-specific sections below. 

References for data, justifications for assumptions, and additional con-
text is provided in footnotes to the data tables. Footnotes are inserted 
at the most general level possible, i. e., footnotes are inserted at table 
headings where they apply to the majority of data, at column / row 
headings where they apply to the majority of data in the respective 
column / row, and at individual cells where they apply only to data 
points or ranges given in individual cells. Input data are included in 
normal font type, output data resulting from data conversions shown 
in figures and tables mentioned above are bolded, and intermediate 
outputs are italicized. 

A.III.2	 Energy supply

A.III.2.1	 Approach

The emission intensity of electricity production (measured in kg CO2-
equivalents (CO2eq) / MWh) can be used as a measure to compare the 
specific greenhouse gas (GHG) emissions of suggested emission miti-
gation options and those of conventional power supply technologies. 
With respect to costs, the levelized cost of energy (LCOE), measured in 
USD2010 / MWh, serves the same purpose.2 

The calculation of LCOE of a technology requires data on all cash flows 
that occur during its lifetime (see formula in Annex II.3.1.1) as well as 
on the amount of energy that is provided by the respective technol-
ogy. Cash flows are usually reported in some aggregate form based on 
widely deployed monetary accounting principles combining cash flows 
into different categories of expenditures and revenues that occur at 
varying points during the lifetime of the investment. 

The applied method presents LCOE that include all relevant costs asso-
ciated with the construction and operation of the investigated power 
plant in line with the approach in IEA (2010). Taxes and subsidies are 
excluded, and it is assumed that grids are available to transport the 
electricity. Additional costs associated with the integration of variable 
sources are neglected as well (see Section 7.8.2 for an assessment of 
these costs). 

2	 The merits and shortcomings of this method are discussed in detail in the Metrics 
and Methodology Annex of the WGIII AR5 (Annex II). 
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The input data used to calculate LCOE are summarized in Table 1 
below. The conversion of input data into LCOE requires the steps out-
lined in the following:

Levelized cost (LCOE) in USD2010 / MWhe

LCOE = ​ α · I + OM + F  ____ 
E
 ​ � (Equation A.III.1)

α = ​  r ____ 
1 − (1 + r​)​−​L​T​​

 ​� (Equation A.III.2)

I = ​ C _ 
​L​B​

 ​ · ​∑ 
t = 1

​ 
​L​B​

  ​(1 + i​)​t​​ · ​( 1 + ​  d __ 
(1 + r​)​​L​T​​

 ​ )​� (Equation A.III.3)

OM = FOM + (VOM − REV + ​d​υ​) · E� (Equation A.III.4)

E = P · FLH� (Equation A.III.5)

F = FC · ​ E _ η ​� (Equation A.III.6)

Where:

•	 LCOE is the levelized cost of electricity.
•	 α is the capital recovery factor (CRF).
•	 r is the weighted average cost of capital (WACC — taken as either 

5 % or 10 %).
•	 I is the investment costs, including finance cost for construction at 

interest i. 
•	 C is the capital costs, excluding finance cost for construction 

(‘overnight cost’). In order to calculate the cost for construction, 

the overnight costs are equally distributed over the construction 
period.

•	 d represent the decommissioning cost. Depending on the data in 
the literature, this is incorporated as an extra capital cost at the 
end of the project duration which is discounted to t = 0 (using 
a decommissioning factor d, as in (Equation A.III.3)), or as a cor-
responding variable cost (dv in (Equation A.III.4)). d = 0.15 for 
nuclear energy, and zero for all other technologies (given the low 
impact on LCOE).

•	 OM are the net annual operation and maintenance costs; sum-
marizing fixed OM (FOM), variable OM (VOM), and variable by-
product revenues (REV). As a default and if not stated explicitly 
otherwise, carbon costs (e. g., due to carbon taxes or emission trad-
ing schemes) are not taken into account in calculating the LCOE 
values. 

•	 E is the energy (electricity) produced annually, which is calculated 
by multiplying the capacity (P) with the number of (equivalent) full 
load hours (FLH).

•	 F are the annual fuel costs,
•	 FC are the fuel costs per unit of energy input, and 
•	 η is the conversion efficiency (in lower heating value — LHV).

•	 i is the interest rate over the construction loan (taken as 5 %).
•	 LT is the project duration (in operation), as defined in IEA (2010).
•	 LB is the construction period.

Emission Intensities:

For data, see Table AIII.2 below. For methodological issues and litera-
ture sources, see Annex II, Section A.II.9.3.

A.III.2.2	 Data

Table A.III.1 | Cost and performance parameters of selected electricity supply technologiesi, ii

Options

C LB FOM VOM REV F

Overnight capital 
expenditure (excl. 

construction interest) 
(USD2010 / kW)

Co
ns

tr
uc

ti
on

 t
im

e 
(y

r)

Fixed annual operation 
and maintenance 
cost (USD2010 / kW)iii

Variable operation 
and maintenance 

cost (USD2010 / MWh)iii

Variable by-product 
revenue (USD2010 / MWh)

Average fuel price 
(USD2010 / GJ)

Min / Median / Max Avg Min / Median / Max Min / Median / Max Min / Median / Max Min / Max

Currently Commercially Available Technologies

Coal — PCiv 380 / 2200 / 3900 5 0 / 23 / 75 0 / 3.4 / 9.0 2.9 / 5.3

Gas — Combined Cyclev 550 / 1100 / 2100 4 0 / 7 / 39 0 / 3.2 / 4.9 3.8 / 14

Biomass — CHPvi 2000 / 5600 / 11000 4.5 0 / 101 / 400 0 / 0 / 56 4 / 26 / 93vii 3.3 / 9.3

Biomass — cofiringvi,viii 350 / 900 / 1800 1 13 / 20 / 20 0 / 0 / 2 3.3 / 9.3

Biomass — dedicatedvi 1900 / 3600 / 6500 4.5 42 / 99 / 500 0 / 3.8 / 34 3.3 / 9.3

Geothermalix, x 1000 / 5000 / 10000 3 0 / 0 / 150 0 / 11 / 31

Hydropowerxi, xii 500 / 1900 / 8500 5 5 / 35 / 250 0 / 0 / 15

Nuclearxiii, xiv 1600 / 4300 / 6400 9 0 / 0 / 110 1.7 / 13 / 30 0.74 / 0.87
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Options

C LB FOM VOM REV F

Overnight capital 
expenditure (excl. 

construction interest) 
(USD2010 / kW)

Co
ns

tr
uc

ti
on

 t
im

e 
(y

r)

Fixed annual operation 
and maintenance 
cost (USD2010 / kW)iii

Variable operation 
and maintenance 

cost (USD2010 / MWh)iii

Variable by-product 
revenue (USD2010 / MWh)

Average fuel price 
(USD2010 / GJ)

Min / Median / Max Avg Min / Median / Max Min / Median / Max Min / Median / Max Min / Max

Concentrated Solar Powerxv, xvi 3700 / 5100 / 11000 2 0 / 50 / 66 0 / 0 / 35

Solar PV — rooftopxvii, xviii 2200 / 4400 / 5300 0 17 / 37 / 44 0 / 0 / 0

Solar PV — utilityxvii, xviii 1700 / 3200 / 4300 0 12 / 20 / 30 0 / 0 / 0

Wind onshorexix, xx 1200 / 2100 / 3700 1.5 0 / 0 / 60 0 / 14 / 26

Wind offshorexix, xxi 2900 / 4400 / 6500 3.5 0 / 40 / 130 0 / 16 / 63

Pre-commercial Technologies

CCS — Coal — Oxyfuelxxii 2800 / 4000 / 5600 5 0 / 58 / 140 9.1 / 10 / 12xxiii 2.9 / 5.3

CCS — Coal — PCxxii 1700 / 3300 / 6600 5 0 / 45 / 290 11 / 15 / 28xxiii 2.9 / 5.3

CCS — Coal — IGCC,xxii 1700 / 3700 / 6600 5 0 / 23 / 110 12 / 13 / 23xxiii 2.9 / 5.3

CCS — Gas — Combined 
Cyclexxii

1100 / 2000 / 3800 4 5 / 13 / 73 4.8 / 8.3 / 15xxiii 3.8 / 14

Oceanxxiv, xxv 2900 / 5400 / 12000 2 0 / 78 / 360 0 / 0.16 / 20

Table A.III.1 (continued) | Cost and performance parameters of selected electricity supply technologiesi, ii

Options

η FLH LT LCOE

Plant efficiency 
(%)

Capacity 
utilization

 / FLH
(hr)

Pl
an

t 
lif

et
im

e 
(y

r)

D
ec

om
m

is
si

on
in

g 
co

st
xx

vi Levelized cost of electricityi

(USD2010 / MWh)

10 % WACC,
high FLH,

0 USD2010 / tCO2eq direct

5 % WACC,
high FLH,

0 USD2010 / tCO2eq direct

10 % WACC,
low FLH,

0 USD2010 / tCO2eq direct

10 % WACC,
high FLH,

100 
USD2010 / tCO2eq direct

Min / Median / Max Min / Max Avg Min / Median / Max Min / Median / Max Min / Median / Max Min / Median / Max

Currently Commercially Available Technologies

Coal — PCiv 33 / 39 / 48 3700 / 7400 40

Se
e 

en
dn

ot
e 

xx
vi

30 / 78 / 120 27 / 61 / 95 36 / 120 / 190 97 / 150 / 210

Gas — Combined Cyclev 41 / 55 / 60 3700 / 7400 30 34 / 79 / 150 31 / 71 / 140 43 / 100 / 170 69 / 120 / 200

Biomass — CHPvi 14 / 29 / 36 3500 / 7000 30 85 / 180 / 400 71 / 150 / 330 130 / 310 / 610  -xxvii

Biomass — cofiringvi 38 / 41 / 48 3700 / 7400 40 65 / 89 / 110 49 / 67 / 88 100 / 140 / 170 160 / 200 / 260xxviii

Biomass — dedicatedvi 20 / 31 / 48 3500 / 7000 40 77 / 150 / 320 63 / 130 / 270 120 / 230 / 440 –xxvii

Geothermalix, x 5300 / 7900 30 18 / 89 / 190 12 / 60 / 130 25 / 130 / 260 18 / 89 / 190

Hydropowerxi, xii 1800 / 7900 50 9 / 35 / 150 6 / 22 / 95 40 / 160 / 630 9 / 35 / 150

Nuclearxiii, xiv 33 / 33 / 34 3700 / 7400 60 45 / 99 / 150 32 / 65 / 94 72 / 180 / 260 45 / 99 / 150

Concentrated Solar Powerxv, xvi 2200 / 3500 20 150 / 200 / 310 110 / 150 / 220 220 / 320 / 480 150 / 200 / 310

Solar PV — rooftopxvii, xviii 1100 / 2400 25 110 / 220 / 270 74 / 150 / 180 250 / 490 / 600 110 / 220 / 270

Solar PV — utilityxvii, xviii 1200 / 2400 25 84 / 160 / 210 56 / 110 / 130 170 / 310 / 400 84 / 160 / 210

Wind onshorexx, xx 1800 / 3500 25 51 / 84 / 160 35 / 59 / 120 92 / 160 / 300 51 / 84 / 160

Wind offshorexxi, xx 2600 / 3900 25 110 / 170 / 250 80 / 120 / 180 160 / 240 / 350 110 / 170 / 250

Pre-commercial Technologies

CCS —Coal — Oxyfuelxxii 32 / 35 / 41 3700 / 7400 40 90 / 120 / 170 71 / 100 / 130 140 / 180 / 270 92 / 130 / 180

CCS — Coal — PCxxii 28 / 30 / 43 3700 / 7400 40 69 / 130 / 200 57 / 110 / 150 97 / 210 / 310 78 / 150 / 210

CCS — Coal — IGCCxxii 30 / 32 / 35 3700 / 7400 40 75 / 120 / 200 63 / 100 / 150 100 / 180 / 310 85 / 140 / 210

CCS — Gas — Combined Cyclexxii 37 / 47 / 54 3700 / 7400 30 52 / 100 / 210 45 / 86 / 190 70 / 140 / 270 55 / 110 / 220

Oceanxxiv, xxv 2000 / 5300 20 82 / 150 / 300 60 / 110 / 210 200 / 390 / 780 82 / 150 / 300
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Notes:
i	 General: Input data are included in normal font type, output data resulting from data conversions are bolded, and intermediate outputs are italicized. Note that many input 

parameters (C, FOM, VOM, and η) are not independent from each other; they come in parameter sets. Parameters that are systematically varied to obtain output values 
include fuel prices, WACC, and full load hours (FLH). Lifetimes and construction times are set to standard values. The range in levelized cost of electricity (LCOE) results from 
calculating two LCOE values per individual parameter set, one at a low and one at a high fuel price, for the number of individual parameter sets available per technology. 
Variation with WACC and with FLHs is shown in separate output columns. This approach is different from the IPCC Special Report on Renewable Energy Sources and Climate 
Change Mitigation (SRREN) (IPCC, 2011), where input parameters were considered as independent from each other and the lowest (highest) LCOE value resulted from taking 
all best-case (worst-case) parameter values.

ii	 General: Comparison of data on capital expenditures with values presented in SRREN (IPCC, 2011) are only possible to limited degrees, since the datasets used in the AR5 
reflect a larger sample of projects (including those with more extreme costs) than in the SRREN.

iii	 General: Some literature references only report on fixed OM costs (FOM), some only on variable OM costs (VOM), some on both, and some none. The data in the FOM and 
VOM columns show the range found in literature. Hence, note that these FOM and VOM values cannot be combined to derive total OM costs. The range of levelized costs of 
electricity shown in the table is the result of calculations for the individual combinations of parameters found in the literature.

iv	 Coal PC (Pulverized Coal): Black and Veatch (2012), DEA (2012), IEA/NEA (2010), IEA (2013a), IEA-RETD (2013), Schmidt et al. (2012), US EIA (2013).
v	 Gas Combined Cycle: Black and Veatch (2012), DEA (2012), IEA/NEA (2010), IEA (2011),IEA (2013a), IEA-RETD (2013), Schmidt et al. (2012), US EIA (2013).
vi	 Biomass: Black and Veatch (2012), DEA (2012), IPCC-SRREN (2011), IRENA (2012), Augustine et al. (2012), US EIA (2013).
vii	 Biomass CHP (Combined Heat and Power): Revenues from heat from CHP are assumed to be the natural gas price divided by 90% (this is the assumed reference boiler 

efficiency). It is assumed that one-third of the heat production is marketable, caused by losses and seasonal demand changes. This income is subtracted from the variable 
operation and maintenance costs (proportional to the amount of heat produced per unit of power), where applicable. Only heat production from biomass-CHP is treated in 
this manner.

viii	 Biomass Co-firing: Capital costs for co-firing as reported in literature (and the summary table) represent an investment to upgrade a dedicated coal power plant to a co-
firing installation. The LCOEs shown in the summary table are those of the total upgraded plant. For the calculation of the LCOEs, the capital costs of the co-firing upgrade 
are added to the median coal PC capital costs. Fuel costs are obtained by weighting coal and biomass costs with their share in the fuel mix (with biomass shares ranging 
between 5% and 20%). To calculate specific emissions, the dedicated biomass emissions and (pulverized) coal emissions were added, taking into account biomass shares 
ranging between 5% and 20%. In the direct emissions coal-related emissions are shown, while the biomass related emissions are shown in column n (Biogenic, geogenic 
CO2 and albedo), indicating indirect emissions. We applied an efficiency of 35% to the coal part of the combustion.

ix	 Geothermal: This category includes both flash steam and binary cycle power plants. Data on costs show wide ranges, depending on specific conditions. Geothermal (binary 
plant) LCOE averages have increased by 39% since the SRREN (BNEF, and Frankfurt and School-UNEP Centre, 2013). Low-end estimate is from Augustine et al. (2012) for a 
flash plant at higher temperatures; the high-end estimate is from Black and Veatch and based on enhanced geothermal systems, which are not fully commercialized. IRENA 
(2013) reports values down to 1400 USD2011/kW.

x	 Geothermal: Black and Veatch (2012), IEA (2013a), Augustine et al. (2012), Schmidt et al. (2012), UK CCC (2011), US EIA (2013).
xi	 Hydropower: This includes both run-of-the-river and reservoir hydropower, over a wide range of capacities. Project data from recent IRENA inventories are incorporated, show-

ing a wider range than reported in SRREN. High-end of capital expenditures refers to Japan, but other sources also report these higher values.
xii	 Hydropower: Black and Veatch (2012), IEA (2013a), IEA-RETD (2013), IRENA (2012), Schmidt et al. (2012), UK CCC (2011), US EIA (2013).
xiii	 Nuclear: Limited recent data and/or original data are available in the published literature. More recent, (grey literature) sources provide investment cost and LCOE estimates 

that are considerably higher than the ones shown here (Brandão et al., 2012). Nuclear fuel prices (per GJ input) are based on fuel cycle costs (usually expressed per MWh 
generated), assuming a conversion efficiency of 33%. They include the front-end (Uranium mining and milling, conversion, enrichment, and fuel fabrication) and back-end 
(spent fuel transport, storage, reprocessing, and disposal) costs of the nuclear fuel cycle (see IEA and NEA, 2010).

xiv	 Nuclear: IAEA (2012), EPRI (2011), IEA/NEA (2010), Rangel and Lévêque (2012), UK CCC (2011), US EIA (2013).
xv	 Concentrated Solar Power: This includes both CSP with storage as well as CSP without storage. To prevent an overestimation of the LCOE for CSP with storage, full load hours 

were used that are directly linked to the design of the system (in- or excluding storage). Project data from recent IRENA inventories are incorporated, showing a wider range 
than reported in SRREN. High-end value comes from IRENA (solar tower, 6-15 hours of storage). Low-end comes from IEA and is supported by IRENA data.

xvi	 Concentrated Solar Power: Black and Veatch (2012), IEA (2013a), IRENA (2012), US EIA (2013).
xvii	 Solar Photovoltaic: IEA (2013a), IRENA (2013), JRC (2012), LBNL (2013), UK CCC (2011), US EIA (2013).
xviii	 Solar Photovoltaic: Solar PV module prices have declined substantially since the SRREN (IPCC, 2011), accounting for much of the decline in capital costs shown here relative 

to those used in SRREN. The LCOE of (crystalline silicon) photovoltaic systems fell by 57% since 2009 (BNEF, and Frankfurt and School-UNEP Centre, 2013).
xix	 Wind: Black and Veatch (2012), DEA (2012), IEA (2013a), IEA-RETD (2013), IRENA (2012), JRC (2012), UK CCC (2011), US DoE (2013), US EIA (2013).
xx	 Wind onshore: High-end of capital expenditures is taken from IEA-RETD study (Mostajo Veiga et al., 2013) for Japan. The capital costs presented here show a higher upper 

end than in the SRREN, and reflect generally smaller wind projects or projects located in remote or otherwise-costly locations. Data from IRENA for Other Asia and Latin 
America show cost ranges well beyond SRREN. In some regions of the world, wind projects have been increasingly located in lower-quality wind resource sites since the 
publication of the SRREN (due in part to scarcity of developable higher-quality sites). The FLHs on wind projects, however, have not necessarily decreased -- and in many cases 
have increased -- due to a simultaneous trend towards longer rotors and higher hub heights. Wind onshore average LCOE have decreased by 15% (BNEF, and Frankfurt and 
School-UNEP Centre, 2013).

xxi	 Wind offshore: Offshore wind costs have generally increased since the SRREN, partially explaining the higher upper-end of the cost range shown here. Average LCOE of off-
shore wind have increased by 44% (BNEF, and Frankfurt and School-UNEP Centre, 2013). Higher capital expenditures reported here are in line with market experiences, i.e., a 
tendency to more remote areas, deeper seas, higher construction costs and higher steel prices. 

xxii	 Carbon Dioxide Capture and Storage (CCS): Black and Veatch (2012), DEA (2012), Herzog (2011), IPCC-SRCCS (2005), Klara and Plunkett (2010), US EIA (2013), Versteeg 
and Rubin (2011), IEA (2011).

xxiii	 Carbon Dioxide Capture and Storage: Includes transport and storage costs of USD201010/tCO2.
xxiv	 Ocean: Ocean includes both tidal and wave energy conversion technologies. The high-end of capital expenditures is for wave energy DEA (2012). Since the SRREN, marine 

wave and tidal average LCOE have increased by 36 and 49% respectively (BNEF, and Frankfurt and School-UNEP Centre, 2013).
xxv	 Ocean: Black and Veatch (2012), DEA (2012), UK CCC (2011).
xxvi	 General: Some literature references report decommissioning costs under VOM. If decommissioning costs are not given, default assumptions are made (see ‘Definition of 

additional parameters’).
xxvii	 Biomass: Due to the complexities involved in estimating GHG emissions from biomass, no estimates for LCOE at a positive carbon price are given here.
xxviii	 Biomass co-firing: Only direct emissions of coal share in fuel consumption are considered to calculate LCOE at a carbon price of 100 USD2010/tCO2eq.
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Table A.III.2 | Emissions of selected electricity supply technologies (gCO2eq / kWh)i

Options
Direct emissions 

Infrastructure & supply 
chain emissions

Biogenic CO2 emissions 
and albedo effect

Methane emissions
Lifecycle emissions 
(incl. albedo effect)

Min / Median / Max Typical values Min / Median / Max

Currently Commercially Available Technologies

Coal — PC 670 / 760 / 870 9.6 0 47 740 / 820 / 910

Gas — Combined Cycle 350 / 370 / 490 1.6 0 91 410 / 490 / 650

Biomass — cofiring n. a. ii – – – 620 / 740 / 890iii

Biomass — dedicated n. a. ii 210 27 0 130 / 230 / 420iv

Geothermal 0 45 0 0 6.0 / 38 / 79

Hydropower 0 19 0 88 1.0 / 24 / 2200

Nuclear 0 18 0 0 3.7 / 12 / 110

Concentrated Solar Power 0 29 0 0 8.8 / 27 / 63

Solar PV — rooftop 0 42 0 0 26 / 41 / 60

Solar PV — utility 0 66 0 0 18 / 48 / 180

Wind onshore 0 15 0 0 7.0 / 11 / 56

Wind offshore 0 17 0 0 8.0 / 12 / 35

Pre-commercial Technologies

CCS — Coal — Oxyfuel 14 / 76 / 110 17 0 67 100 / 160 / 200

CCS — Coal — PC 95 / 120 / 140 28 0 68 190 / 220 / 250

CCS — Coal — IGCC 100 / 120 / 150 9.9 0 62 170 / 200 / 230

CCS — Gas — Combined Cycle 30 / 57 / 98 8.9 0 110 94 / 170 / 340

Ocean 0 17 0 0 5.6 / 17 / 28

Notes:
i	 For a comprehensive discussion of methodological issues and underlying literature sources see Annex II, Section A.II.9.3. Note that input data are included in normal font 

type, output data resulting from data conversions are bolded, and intermediate outputs are italicized.
ii	 Direct emissions from biomass combustion at the power plant are positive and significant, but should be seen in connection with the CO2 absorbed by growing plants. They 

can be derived from the chemical carbon content of biomass and the power plant efficiency. For a comprehensive discussion see Chapter 11, Section 11.13. For co-firing, 
carbon content of coal and relative fuel shares need to be considered.

iii	 Indirect emissions for co-firing are based on relative fuel shares of biomass from dedicated energy crops and residues (5-20%) and coal (80-95%). 
iv	 Lifecycle emissions from biomass are for dedicated energy crops and crop residues. Lifecycle emissions of electricity based on other types of biomass are given in Chapter 7, 

Figure 7.6. For a comprehensive discussion see Chapter 11, Section 11.13.4. For a description of methodological issues see Annex II of this report.
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A.III.3	 Transport

A.III.3.1	 Approach

The following tables provide a limited number of examples of trans-
port modes and technologies in terms of their typical potential CO2eq 
emissions per passenger kilometre (p-km) and freight tonne kilometre 
(t-km), now and in the 2030 timeframe. Estimates of mitigation cost 
ranges (USD2010 / tCO2eq avoided) are also provided for the limited set 
of comparisons where data were available. Mitigation cost ranges for 
HDVs, shipping and air travel were taken directly from the literature. 
For sport utility vehicles (SUVs) and light duty vehicles (LDVs), specific 
mitigation costs were re-calculated for well-defined conditions based 
on basic input parameter sets (see equations and data provided below). 
The methodology to calculate specific mitigation costs, also called lev-
elized cost of conserved carbon (LCCC), is discussed in Annex II. Future 
estimates of both emission intensities and specific mitigation costs are 
highly uncertain and depend on a range of assumptions.

The variation in emission intensities reflects variation in vehicle efficien-
cies together with narrow ranges for vehicle occupancy rates, or reflects 
estimates extracted directly from the literature. No cost uncertainty 
analysis was conducted. As mentioned above, mitigation cost ranges for 
HDVs, shipping, and air travel were taken directly from the literature. A 
standardized uncertainty range of + / - 100 USD2010 / tCO2eq was used for 
SUVs and LDVs. Some parameters such as CO2eq emitted from electric-
ity generation systems and well-to-wheel CO2eq emission levels from 
advanced biofuels should be considered as specific examples only. 

This approach was necessary due to a lack of comprehensive studies 
that provide estimates across the full range of vehicle and technology 
types. Therefore, possible inconsistencies in assumptions and results 
mean that the output ranges provided here should be treated with 
caution. The output ranges shown are more indicative than absolute, 
as suggested by the fairly wide bands for most emission intensity and 
mitigation cost results.

The meta-analysis of mitigation cost for alternative road transport 
options was conducted using a 5 % discount rate and an approxi-
mate vehicle equipment life of 15 years. No fuel or vehicle taxes were 
included. Assumptions were based on the literature review provided 
throughout Chapter 8 and the estimates shown in Tables 8.1 and 8.2. 
Changes in assumptions could result in quite different results.

Some of the key assumptions are included in footnotes below the 
tables. Further information is available upon request from authors of 
Chapter 8.

Where emission intensities and LCCC were re-calculated based on 
specific input data, those inputs are summarized in Table 1 below. The 

conversion of input data into emission intensities and LCCC requires 
the steps outlined in the following:

Emissions per useful distance travelled (tCO2 eq/ p-km and 
tCO2 eq/ t-km)

EI = ​ 
VEf​f​i​ · FC​I​i​ ___ 

O​C​i​
 ​  · β� (Equation A.III.7)

Where:

•	 EI is the emission intensity
•	 VEff is the typical vehicle efficiency
•	 FCI is the fuel carbon intensity
•	 OC is the vehicle occupancy
•	 ß is a unit conversion factor

Levelized Cost of Conserved Carbon (USD2010 / tCO2eq )

LCC​C​r​ = ​ ΔE _ 
ΔC

 ​� (Equation A.III.8)

ΔE = αΔI + ΔF� (Equation A.III.9)

α = ​  r ____ 
1 − (1 + r​)​−L​

 ​� (Equation A.III.10)

ΔF = (VEf​f​i​ · A​D​i​ · F​C​i​ − VEf​f​j​ · A​D​j​ · F​C​j ​) · γ� (Equation A.III.11)

ΔC = (VEf​f​j​ · FC​I​j​ · A​D​j​ − VEf​f​i​ · FC​I​i​ · A​D​i​ ) · η� (Equation A.III.12)

Where:

•	 ΔE is the annualized travel cost increment
•	 ΔC is the difference in annual CO2eq emissions of alternative i and 

baseline vehicle j, i. e., the amount of CO2eq saved
•	 α is the capital recovery factor (CRF).
•	 ΔI is the difference in purchase cost of baseline and the alternative 

vehicle
•	 ΔF is the difference in annualized fuel expenditures of alternative i 

and baseline vehicle j
•	 r is the weighted average cost of capital (WACC)
•	 L is the vehicle lifetime
•	 VEff is the typical vehicle efficiency as above, but in calculations 

for ΔFC and ΔC average typical vehicle efficiency is used.
•	 AD is the average annual distance travelled
•	 FCi is average unit fuel purchase cost (taxes or subsidies excluded) 

of fuel used in vehicle i
•	 γ and η are unit conversion factors

Remarks:

Variation in output EI derives from variation of vehicle fuel consump-
tion VEff and vehicle occupancy OC.
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A.III.3.2	 Data

Table A.III.3 | Passenger transport — currently commercially available technologiesi

Option

VEff FCI OC ΔI L AD

Vehicle fuel 
consumption 

(l / 100km for fossil 
fuel; kWh / km 

for electricity)ii

CO2eq intensity 
of fueliii

Vehicle occupancy 
(capita)iv

Vehicle price 
markup on baseline 

(Incremental 
capital 

expenditure) 
(USD2010)v

Vehicle lifetime 
(yrs)vi 

Annual distance 
travelled (km / yr) vii

Aviation (commercial, medium to long haul)

2010 Stock Average – 73 g / MJ – – – –

Narrow and Wide Body – 73 g / MJ – baseline – –

Rail (Light Rail Car)

Electric, 600 g CO2eq / kWhel 1.3 – 2.0 600 g / kWh 60 – 80 – – –

Electric, 200 g CO2eq / kWhel 1.3 – 2.0 200 g / kWh 60 – 80 – – –

Road

New Buses, Large Size

Diesel 36 – 42 3.2 kg / l 40 – 50 – – –

Hybrid Diesel 25 – 29 3.2 kg / l 40 – 50 – – –

New Sport Utility Vehicles (SUV), Mid-Size

2010 Stock average SUV 10 – 14 2.8 kg / l 1.5 – 1.7 – 15 15,000

Gasoline 9.6 – 12 2.8 kg / l 1.5 – 1.7 baseline 15 15,000

Hybrid Gasoline (25 % better) 7.2 – 9 2.8 kg / l 1.5 – 1.7 5000 15 15,000

New Light Duty Vehicles (LDV), Mid-Size 

2010 Stock average LDV 8 – 11 2.8 kg / l 1.5 – 1.7 – 15 15,000

Gasoline 7.8 – 9 2.8 kg / l 1.5 – 1.7 baseline 15 15,000

Hybrid Gasoline (28 % better) 5.6 – 6.5 2.8 kg / l 1.5 – 1.7 3000 15 15,000

Diesel 5.9 – 6.7 3.2 kg / l 1.5 – 1.7 2500 15 15,000

CNG 7.8 – 9 2.1 kg / l 1.5 – 1.7 2000 15 15,000

Electric, 600 g CO2eq / kWhel 0.24 – 0.3 600 g / kWh 1.5 – 1.7 16000 15 15,000

Electric, 200 g CO2eq / kWhel 0.24 – 0.3 200 g / kWh 1.5 – 1.7 16000 15 15,000

New 2-Wheelers (Scooter up to 200 cm3 cylinder capacity)

2010 Stock Average 1.5 – 2.5 2.8 kg / l 1.1 – 1.3 – – –

Gasoline 1.1 – 1.9 2.8 kg / l 1.1 – 1.3 – – –
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Table A.III.3 (continued) | Passenger transport — currently commercially available technologies

Option

FC EI ΔE ΔC LCCC5 %

Average annual 
fuel purchase cost 

(USD2010 / l for fossil fuel; 
UScents2010 / kWh)viii

Emissions per useful 
distance travelled 

(gCO2eq / p-km)

Annualized travel cost 
increment (USD2010 / yr)

Annual CO2eq 
savings from vehicle 
switch (tCO2eq / yr)

Levelized cost of 
conserved carbon 

at 5 % WACC
(USD2010 / tCO2eq)

Aviation (commercial, medium to long haul)

2010 Stock Average – 80 – 218ix – – –

Narrow and Wide Body – 66 – 95x – – –200xi

Rail (Light Rail Car)

Electric, 600 g CO2eq / kWhel – 10 – 20 – – –

Electric, 200 g CO2eq / kWhel – 3.3 – 6.7 – – –

Road

New Buses, Large Size

Diesel – 23 – 34 – – –

Hybrid Diesel – 16 – 24 – – –

New Sport Utility Vehicles (SUV), Mid-Size

2010 Stock average SUV 0.81 160 – 260 – – –

Gasoline 0.81 160 – 220 baseline baseline baseline

Hybrid Gasoline (25 % better) 0.81 120 – 170 150 1.1 140  

New Light Duty Vehicles (LDV), Mid-Size 

2010 Stock average LDV 0.81 130 – 200 – – –

Gasoline 0.81 130 – 170 baseline baseline baseline

Hybrid Gasoline (28 % better) 0.81 92 – 120 2.5 1.0 2.6

Diesel 0.81 110 – 150 –15 0.43 –35

CNG 0.35 97 – 130 –390 0.83 –470

Electric, 600 g CO2eq / kWhel 0.12 85 – 120 1000 1.1 950

Electric, 200 g CO2eq / kWhel 0.12 28 – 40 1000 2.7 370

New 2-Wheelers (Scooter up to 200 cm3 cylinder capacity)

2010 Stock Average – 32 – 63 – – –

Gasoline – 24 – 47 – – –

Notes:
i	 Note that input data are included in normal font type, output data resulting from data conversions are bolded, and intermediate outputs are italicized. 
ii	 Vehicle fuel economy estimates for road vehicles based on IEA (2012a) and IEA Mobility Model (MoMo) data values, using averages for stock and new vehicles around the 

world to establish ranges. For rail, water, and air these estimates are based on a range of studies, see Chapter 8 Section 8.3. Rail estimates were based on expert judgment.
iii	 CO2eq fuel intensities are based on IPCC (2006). CO2eq intensities of electricity based on generic low and high carbon power systems. Well-to-wheel estimates from a range 

of sources, and specific examples as indicated in tables.
iv	 Occupancy rates for trains, buses, SUVs, LDVs, and 2-wheelers based on IEA Mobility Model averages from around the world. Bus and rail represent relatively high intensity 

usage; average loadings in some countries and regions will be lower. 
v	 Vehicle purchase price increments for LDVs based primarily on NRC (2013) and IEA (2012a). 
vi	 For LDVs, vehicle lifetime-kilometres set to 156,000 kms based on discounting 15 years and 15,000 km per year. Other vehicle type assumptions depend on literature. No 

normalization was attempted.
vi	 Annual distance travelled as described above.
vii	 Fuel prices are point estimates based on current and projected future prices in IEA (2012b). Variation in relative fuel prices can have significant impacts on transport costs 

and LCCC. Though no cost uncertainty analysis was performed, cost ranges were used where available and a standardized USD2010100/tCO2eq uncertainty range was added 
around all final point estimates.

ix	 Current energy consumption per passenger kilometre is 1.1–3 MJ/p-km (IEA, 2009a).
x	 Based on TOSCA (2011, Table S-1). Slightly wider range for new/very new to account for range of load factors and distances.
xi	 Based on IEA and TOSCA analysis. IEA based on 30 years, 10% discount rate.
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Table A.III.4 | Passenger transport — future (2030) expected technologiesi

Option

VEff FCI OC ΔI L AD

Vehicle fuel 
consumption 

(l / 100km)

CO2eq intensity 
of fuelii

Vehicle occupancy 
(capita) iii

Vehicle price mark-
up on baseline 
(Incremental 

capital 
expenditure) 

(USD2010)iv

Vehicle lifetime 
(yrs) v

Annual distance 
travelled (km / yr) vi

Aviation

Narrow Body (20 % better) – – –vii – 15 –

Narrow Body, Open Rotor 
Engine (33 % better)

– – – vii – 15 –

Road

Optimized Sport Utility Vehicles (SUV), Mid-Size

Gasoline (40 % better) 5.8 – 7.2 2.8 kg / l 1.5 – 1.7 3500viii, future 
baseline

15 15,000

Hybrid Gasoline (50 % better) 4.8 – 6ix 2.8 kg / l 1.5 – 1.7 1200 15 15,000

Optimized Light Duty Vehicles (LDV), Mid-Size 

Gasoline (40 % better) 4.7 – 5.4x 2.8 kg / l 1.5 – 1.7 2500viii, future 
baseline

15 15,000

Hybrid Gasoline (50 % better) 3.9 – 4.5xi 2.8 kg / l 1.5 – 1.7 1000 15 15,000

Hybrid Gasoline / Biofuel (50 / 50 share) 
(Assuming 70 % less CO2eq / MJ 
biofuel than / MJ gasoline)

3.9 – 4.5xi 2.8 kg / l 1.5 – 1.7 1000 15 15,000

Diesel Hybrid 3.3 – 3.8xii 3.2 kg / l 1.5 – 1.7 1700 15 15,000

CNG Hybrid 3.9 – 4.5 xi 2.1 kg / l 1.5 – 1.7 1200 15 15,000

Electric, 200 g CO2eq / kWhel 0.19 – 0.26xiii 200 g / kWh 1.5 – 1.7 3600 15 15,000
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Table A.III.4 (continued) | Passenger transport — future (2030) expected technologiesi

Option

FC EI ΔE ΔC LCCC5 %

Average annual 
fuel purchase cost 
(USD2010 / l for fossil 

fuel; UScents2010 / kWh)xiv

Emissions per useful 
distance travelled 

(gCO2eq / p-km)

Annualized travel cost 
increment (USD2010 / yr)

Annual CO2eq 
savings from vehicle 
switch (tCO2eq / yr)

Levelized cost of 
conserved carbon 

at 5 % WACC
(USD2010 / tCO2eq)

Aviation

Narrow Body (20 % better) – – – – 0 – 150

Narrow Body, Open Rotor Engine (33 % better) – 44 – 63xv – – 0 – 350

Road

Optimized Sport Utility Vehicles (SUV), Mid-Size

Gasoline (40 % better) 0.93 94 – 130 –190xvi 1.8xvi –110xvi

Hybrid Gasoline (50 % better) 0.93 78 – 110 –440 2.2 –200

Optimized Light Duty Vehicles (LDV), Mid-Size 

Gasoline (40 % better) 0.93 76 – 100 –230xvii 1.4xvii –160xvii

Hybrid Gasoline (50 % better) 0.93 64 – 83 –21 0.35 – 61

Hybrid Gasoline / Biofuel (50 / 50 share) 
(Assuming 70 % less CO2eq / MJ 
biofuel than / MJ gasoline)

0.93 41 – 54 38 1.0 39

Diesel Hybrid 0.93 63 – 83 –15 0.36 –43

CNG Hybrid 0.44 48 – 63 –310 0.77 –410

Electric, 200 g CO2eq / kWhel 0.13 23 – 35 86 1.4 61

Notes:
i	 Only those options, where data were available and where significant advances are expected are listed. Other transport options, such as trains, buses and 2-wheelers will 

remain relevant means of transport in the future but are not covered due to data limitations. Note that input data are included in normal font type, output data resulting from 
data conversions are bolded, and intermediate outputs are italicized.

ii	 CO2eq fuel intensities are based on IPCC (2006). CO2eq intensities of electricity are based on generic low and high carbon power systems. Well-to-wheel estimates from a 
range of sources, and specific examples as indicated in tables.

iii	 Occupancy rates for trains, buses, SUVs, LDVs, 2-wheelers based on IEA Mobility Model averages from around the world. Bus and rail represent relatively high intensity usage; 
average loadings in some countries and regions will be lower.

iv	 Future vehicle purchase price mark ups based primarily on NRC (2013) and NRC (2010), also IEA (2009a), TIAX (2011), TOSCA (2011), Horton G. (2010) and other sources.
v	 For LDVs, vehicle lifetime-kilometres set to 156,000 km based on discounting 15 years and 15,000 km per year. Other vehicle type assumptions depend on literature. No 

normalization was attempted.
vi	 Annual distance travelled as described above.
vii	 Horton G. (2010) gives ranges from 100 to 150 for Boeing 737-800 and 350 to 500 for Airbus A380.
viii	 Relative to 2010 baseline.
ix	 Based on NRC (2013) and other studies, see Section 8.3.
x	 Based on NRC (2013) and other studies, see Section 8.3.
xi	 Fuel consumption of future hybrid gasoline, hybrid gasoline/biofuel, and hybrid CNG based on NRC (2013) and other studies, see Section 8.3.
xii	 Fuel consumption of future diesel based on NRC (2013) and other studies, see Section 8.3.
xiii	 Fuel consumption of future electric based on NRC (2013) and other studies, see Section 8.3.
xiv	 Future fuel prices based on IEA (2012b). These are point estimates — variation in relative fuel prices can have significant impacts on transport costs and LCCC.
xv	 Value results from assumption of 33% improvement relative to current new narrow and medium body aircrafts based on TOSCA (2011) and Horton G. (2010).
xvi	 Relative to 2010 gasoline SUV at 2010 fuel price of 0.81 USD2010/l.
xvii	 Relative to 2010 gasoline LDV at 2010 fuel price of 0.81 USD2010/l.
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Table A.III.5 | Freight transport — currently commercially available technologiesi

Option

VEff FCI OC ΔI L AD

Vehicle fuel 
consumption 

(l / 100km)

CO2eq intensity 
of fuelii

Vehicle load (t)

Vehicle price 
markup on baseline 

(Incremental 
capital 

expenditure) 
(USD2010)

Vehicle lifetime 
Annual distance 
travelled (km / yr) 

Aviation (commercial, long haul)iii

2010 Stock Average – – – – – –

Dedicated Aircraft – – – – – –

Belly-hold – – – – – –

Rail (freight train) iv

Diesel, light goods – – – – – –

Diesel, heavy goods – – – – – –

Electric, 200g CO2eq / kWhel – – – – – –

Maritimev

Current Average International Shipping – – – – – –

New Large International 
Container Vesselvi

– – – – – –

Large Bulk Carrier / Tankervii – – – – – –

LNG Bulk Carrierviii – – – – – –

Roadix

New Medium Duty Trucks

2010 Stock Average 16 – 24 3.2 kg / l 1.6 – 1.9 – – –

Diesel 14 – 18 3.2 kg / l 1.6 – 1.9 – – –

Diesel Hybrid 11 – 14 3.2 kg / l 1.6 – 1.9 – – –

CNG 18 – 23 2.1 kg / l 1.6 – 1.9 – – –

New Heavy Duty, Long-Haul Trucks

2010 Stock Average 28 – 44 3.2 kg / l 8 – 12 – – –

Diesel 25 – 32 3.2 kg / l 8 – 12 – – –

CNG 31 – 40 2.1 kg / l 8 – 12 – – –
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Table A.III.5 (continued) | Freight transport — currently commercially available technologies i

Option

FC EI ΔE ΔC LCCC5 %

Average annual 
fuel purchase cost 
(USD2010 / l for fossil 

fuel; UScents2010 / kWh)

Emissions per useful 
distance travelled 

(gCO2eq / t-km)

Annualized travel cost 
increment (USD2010 / yr)

Annual CO2eq 
savings from vehicle 
switch (tCO2eq / yr)

Levelized cost of 
conserved carbon 

at 5 % WACC
(USD2010 / tCO2eq)

Aviation (commercial, long haul) iii

2010 Stock Average – 550 – 740 – – –

Dedicated Aircraft – 500 – 820 – – –200x

Belly-hold – 520 – 700xi – – –

Rail (freight train) iv

Diesel, light goods – 26 – 33 – – –

Diesel, heavy goods – 18 – 25 – – –

Electric, 200g CO2eq / kWhel – 6 – 12 – – –

Maritimev

Current Average International Shipping – 10 – 40 – – –

New Large International Container Vesselvi – 10 – 20 – – –

Large Bulk Carrier / Tankervii – 3 – 6 – – –

LNG Bulk Carrierviii – 9 – 13 – – –

Roadix

New Medium Duty Trucks

2010 Stock Average – 270 – 490 – – –

Diesel – 240 – 370 – – –

Diesel Hybrid – 180 – 270 – – –

CNG – 200 – 300 – – –

New Heavy Duty, Long-Haul Trucks

2010 Stock Average – 76 – 180 – – –

Diesel – 70 – 130 – – –

CNG – 60 – 110 – – –

Notes:
i	 Note that input data are included in normal font type, output data resulting from data conversions are bolded, and intermediate outputs are italicized.
ii	 CO2eq fuel intensities are based on IPCC (2006). CO2eq intensities of electricity based on generic low and high carbon power systems. Well-to-wheel estimates from a range 

of sources, and specific examples as indicated in tables. 
iii	 These baseline carbon intensity values for long haul air freight are based on mean estimates from DEFRA (2013). They relate to Boeing 747 and 757 air freight with an aver-

age carrying capacity of 84 tonnes and load factor of 69%. High and low estimates set at 15% above and below the means to reflect differences in the energy efficiency of 
different aircraft types operating with differing load factors. 

iv	 The carbon intensity values for rail freight are based mainly on analyses by DEFRA (2013) and EcoTransit (2011). Expert judgment has been exercised to allow for interna-
tional differences in the age, capacity, and efficiency of railway rolling stock and railway operating practices.

v	 Estimates are derived mainly from DEFRA (2012). This source presents mean carbon intensity values for particular types and size ranges of vessels. The ranges around these 
means allow for differences in actual vessel size, loading, and energy efficiency on the basis of expert judgment.

vi	 Carrying more than 8000 twenty-foot equivalent units (TEU).
vii	 100-200,000 dead weight tonnes.
viii	 100-200,000 cubic metres.
ix	 Truck CO2eq/t-km ranges estimated from NRC (2010) and IEA Mobility Model data for averages for truck load factors around the world; vehicle efficiency estimates primarily 

from NRC (2010), IEA (2009a) and TIAX (2011). Baseline estimates derived from DEFRA (2013), EcoTransit (2011) and IEA (2009a). High and low estimates allow for varia-
tions in vehicle size, weight, age, operation and loading in different parts of the world.

x	 Aviation freight cost estimates assumptions similar to passenger. Based on IEA and TOSCA analysis, IEA based on 30 years, 10% discount rate.
xi	 The allocation of emissions between passenger and freight traffic on belly-hold services conforms to a standard ‘freight weighting’ method. 
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A.III.4	 Industry

A.III.4.1	 Introduction

The data presented below has been used to assess typical product-
specific CO2eq emissions (i. e., emission per unit of product)3 for dif-
ferent production practices, which are commercially available today or 
may become so in the future, and for selected industrial sectors. Both 
direct and indirect specific emissions are assessed. Specific emissions 
could be reduced by switching to production processes that cause 
lower emissions for otherwise comparable products4 and by reducing 
production / consumption of emission-intensive products. Some produc-
tion practices are mutually exclusive; others can be combined to yield 
deeper reductions in specific emissions. The impact of decarbonizing 
electricity supplied for industrial processes has been assessed, too, for 
well-defined exemplary conditions.

For all input parameters and specific CO2eq emissions global average 
values are given as a benchmark. Parameters of individual production 
practices are generally estimates of typical values based on limited 
studies and expert judgment. Comparisons of input parameters across 
different individual production practices and with global averages 
(see Tables A.III.8 – A.III.12 below) yields insights into the intermediate 
effect via which changes in final specific CO2eq emissions occur for 
certain production practices.

Estimates of future global averages in specific CO2eq emissions are 
derived for long-term scenarios that stabilized GHG concentrations at 
about 450 ppm CO2eq and provide data at the necessary level of detail. 
These can be considered as another rough benchmark for emission 
intensities that can be achieved with currently available and potential 
future production practices. Generally, scenarios that provide sufficient 
detail at the level of industrial subsectors / products are very scarce (2 – 3 
models) and are in many cases derived from the same data source as 
data for individual production practices (mostly International Energy 
Agency)5. Comparisons of emission intensities in future 450 ppm stabi-
lization scenarios with available production practices can yield rough 

3	 Emissions cannot always be expressed in product-specific terms. In the case of 
chemicals, products are too heterogeneous to express emissions per unit of prod-
uct. Hence, global emissions of different production practices / technologies have 
been assessed for total global chemicals production.

4	 Note that the extent to which certain production processes can be replaced by 
others is often constrained by various conditions that need to be considered on a 
case by case basis. The replacement of blast oxygen steel furnaces by electric arc 
furnaces, for instance, is limited by availability of scrap.

5	 Further literature sources are assessed in Chapter 10 (Section 10.7). The data 
sources assessed in 10.7 could, however, often not be used in the summary 
assessment mainly due to non-comparability of methodological approaches. Chap-
ter 6 presents more comprehensive scenario assessments including all sectors 
of the economy, which often comes, however, at the expense of sectoral detail. 
Chapter 10 (Section 10.10) discusses these scenarios from an industry perspective.

insights into future trends for production practices with different spe-
cific emissions, but need to be considered with caution.

Specific mitigation costs have been assessed for all production prac-
tices except for the decarbonization of electricity supply, the costs of 
which are dealt with in Chapter 7 (Section 7.8). Specific mitigation 
costs are expressed in USD2010 / tCO2 or USD2010 / tCO2eq and take into 
account total incremental operational and capital costs. Generally, 
costs of the abatement options shown vary widely between individual 
regions and from plant to plant. Factors influencing the costs include 
typical capital stock turnover rates (some measures can only be 
applied when plants are replaced), relative energy costs, etc. No meta-
analysis of such individual cost components has been attempted, how-
ever, due to limited data availability. Estimates are based on expert 
judgment of the limited data that is available. Hence, the estimates of 
specific mitigation costs should be considered with care and as indica-
tive only.

Information on specific emissions of different production practices and 
associated specific mitigation cost is presented in Figures 10.7 – 10.10 
and in Figures 10.19 and 10.20.

A.III.4.2	 Approaches and data by industry 
sector

A.III.4.2.1	 Cement

Direct specific emissions of cement (tCO2 / t cement) are derived from 
technical parameters via the following equation:

E​I​direct​ = (1 − λ) · clc · (​e​n−el​ · FC​I​n−el​ + C​I​calc​)� (Equation A.III.13)

Where

•	 λ is the percentage of emissions captured and stored via CCS
•	 clc is the clinker to cement ratio
•	 en-el is the specific non-electric energy use, i. e., the non-electric 

energy use per unit of clinker
•	 FCIn-el is the carbon intensity of the non-electric fuel used
•	 CIcalc is the carbon intensity of the calcination process

Indirect specific emissions of cement (tCO2 / t cement) are derived from 
specific electricity use and the carbon intensity of electricity:

E​I​indirect​ = ​e​el​ · FC​I​el​� (Equation A.III.14)

Where

•	 eel is the specific electric energy use, i. e., the electricity use per unit 
of cement

•	 FCIel is the carbon intensity of the electricity used
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Total specific emissions of cement (tCO2 / t cement) are the sum of both 
direct and indirect specific emissions:

E​I​total​ = E​I​direct​ + E​I​indirect​� (Equation A.III.15)

Remarks:

Variation in emission intensity derives from variation in selected input 
parameters. Individual input parameters are varied systematically, i. e., 

in accordance with the definition of each production practice, while all 
other input parameters are kept at global average values.

Data on technical input parameters is also very limited. Sources are 
specified in footnotes to data entries.

Specific mitigation costs (cost of conserved carbon) are estimated 
based on expert assessment of limited selected studies. See footnote 
ii for details.

Table A.III.7 | Technical parameters and estimates for cost of conserved carbon of cement production processesi
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Historical Global Average Data and Future Data for 450 ppm Scenarios from Integrated Models

Global average (2030) iii – – – – – – – – – 0.38 – 0.59

Global average (2050) iii – – – – – – – – – 0.24 – 0.39

Global average (2010) 0.8 3.9 0.1 0.51 109 0.46iv 0 0.72 0.05 0.77

Currently Commercially Available Technologies

Best practice energy intensity 0.8 2.9 – 3.1v 0.1 0.51 80 – 90vi 0.46iv 0 0.64 – 0.66 0.037 – 0.041 0.68 – 0.70 < 0 – 150

Best practice clinker to cement ratio 0.6 – 0.7vii 3.9 0.1 0.51 109 0.46iv 0 0.54 – 0.63 0.05 0.59 – 0.68 < 0 – 50viii

Best practice energy intensity and 
clinker to cement ratio combined

0.6 – 0.7vii 2.9 – 3.1v 0.1 0.51 80 – 90vi 0.46iv 0 0.48 – 0.57 0.037 – 0.041 0.52 – 0.62 < 0 – 150viii

Improvements in non-electric fuel mixix 0.8 3.9 0.056x 0.51 109 0.46iv 0 0.58 0.05 0.63 < 0 – 150viii

Decarbonization of electricity supply 0.8 3.9 0.1 0.51 109 0 – 0.39xi 0 0.72 0 – 0.043 0,72 – 0.76

Pre-commercial Technologies

CCSxii 0.8 3.9 0.1 0.51 109 0.46iv 75 – 90 0.072 – 0.18 0.05 0.12 – 0.23 50 – 150xiii

CCS and fully decarbonized electricityxiv 0.8 3.9 0.1 0.51 109 0 75 – 90 0.072 – 0.18 0 0.072 – 0.18

Notes:
i	 Note that input data are included in normal font type, output data resulting from data conversions are bolded, and intermediate outputs are italicized.
ii	 Expert judgment based on McKinsey (2009), 2012, IEA (2009b, 2012a), BEE (2012), and others. The costs of the abatement options shown vary widely between individual 

regions and from plant to plant. Factors influencing the costs include typical capital stock turnover rates (some measures can only be applied when plants are replaced), rela-
tive energy costs, etc.

iii	 Data range is taken from the following models: AIM Enduse model (Akashi et al., 2013), IEA 2DS low demand (IEA, 2012a).
iv	 Based on global industry-wide average CO2eq intensity of primary energy used in electricity and heat supply in 2010 (see Chapter 10. Table 10.2)
v	 This range is based on best practice operation of 4 to 6 stage pre-heater and pre-calciner kiln technology based on IEA (2009b). Actual operation performance does depend 

on issues such as moisture content and raw material quality and can be above this range.
vi	 Best practice electricity consumption is based on IEA (2007).
vii	 Minimum clinker to cement ratio is for Portland cement according to IEA (2007), which is a globally achievable value taking availability of substitutes into account IEA 

(2009b). Further reductions in the clinker to cement ratio are possible for other types of cement (e. g., fly ash or blast furnace slag cement).
viii	 For clinker substitution and fuel mix changes, costs depend on the regional availability and price of clinker substitutes and alternative fuels.
ix	 This is assuming that only natural gas is used as non-electric fuel. Further reductions in non-electric fuel emission intensity are technically possible, e. g., by increased use of biomass.
x	 Natural gas fuel emission factor (IPCC, 2006).
xi	 The upper end of the range is based on natural gas combined cycle (NGCC) with an efficiency of 55 % and fuel emission factors from IPCC (2006).
xii	 CCS: Carbon dioxide capture and storage. This option assumes no improvements in fuel mix. Feasibility of CCS depends on global CCS developments. CCS is currently not yet 

applied in the cement sector.
xiii	 IEA GHG (2008) estimates CCS abatement cost at 63 to 170 USD / tCO2 avoided.
xiv	 This option assumes no improvements in non-electric fuel mix.
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A.III.4.2.2	 Iron and steel

Direct specific CO2 emissions of crude steel (tCO2 / t steel) are derived 
from technical parameters via the following equation:

E​I​direct​ = (1 − λ) · E​I​direct,noCCS​� (Equation A.III.16)

Where

•	 λ is the percentage of emissions captured and stored via CCS
•	 EIdirect,noCCS is the direct emission intensity without CCS

Indirect specific CO2 emissions of crude steel (tCO2 / t steel) are derived 
from specific electricity use and the carbon intensity of electricity:

E​I​indirect​ = ​e​el​ · FC​I​el​� (Equation A.III.17)

Where

•	 eel is the specific electric energy use, i. e., the electricity use per unit 
of crude steel

•	 FCIel is the carbon intensity of the electricity used

Total specific CO2 emissions of crude steel (tCO2 / t steel) are the sum of 
both direct and indirect specific emissions:

E​I​total​ = E​I​direct​ + E​I​indirect​� (Equation A.III.18)

Remarks:

Data on technical input parameters is limited and almost exclusively 
based on IEA (2007). Emission intensities of the advanced blast fur-
nace route, the natural gas DRI route, and the scrap-based electric 
arc furnace route are point estimates of global best practice based on 
IEA (2007). Since no variation in input parameters could be derived 
from the literature, output ranges have been constructed as an interval 
around the mean value based on + / -10 % of the respective savings. 
Where input parameters are set by assumption, they are varied within 
typical ranges and become the sole source of variation in output val-
ues, while all other input parameters are kept at global average values. 

Specific mitigation costs (cost of conserved carbon) are estimated 
based on expert assessment of limited selected studies. See footnote 
vi for details.

A.III.4.2.3	 Chemicals

Global direct CO2 emissions (GtCO2) of global chemicals production in 
2010 are derived from technical parameters via the following equation:

CO​2​direct​ = (1 − λ) · CO​2​direct,noCCS​� (Equation A.III.19)

Where

•	 λ is the percentage of emissions captured and stored via CCS
•	 CO2direct,noCCS are global direct CO2 emissions in chemicals produc-

tion in 2010 without CCS

Global indirect CO2 emissions (GtCO2) of global chemicals production 
in 2010 are derived from global electricity use in chemicals production 
and the carbon intensity of electricity:

CO​2​indirect​ = Elec · FC​I​el​ · γ� (Equation A.III.20)

Where

•	 Elec is the global electric energy use in the chemicals sector in 2010
•	 FCIel is the carbon intensity of the electricity used
•	 γ is a unit conversion factor of 1 / 1000

Total global CO2eq emissions (GtCO2eq) of chemicals production in 
2010 are the sum of direct and indirect CO2 emissions and CO2-equiva-
lents of non-CO2 emissions:

CO2​e​total​ = CO​2​direct​ + CO​2​indirect​ + CO2​e​acid​ + CO2​e​HFC−22​ 
� (Equation A.III.21)

Where

•	 CO2eacid are global direct N2O emissions from global nitric and 
adipic acid production expressed in CO2 equivalents

•	 CO2eHFC-22 are global direct HFC-23 emissions from HFC-22 pro-
duction expressed in CO2 equivalents

Remarks:

For most production practices, only central estimates for technical 
input parameters could be derived from the available literature. Where 
input parameters are set by assumption, they are varied within typi-
cal ranges and become a source of variation in output values. Where 
no variation in input parameters could be derived from the literature, 
output ranges have been constructed as an interval around the mean 
value based on + / -10 % of the respective savings.

Specific mitigation costs (cost of conserved carbon) are estimated 
based on expert assessment of limited selected studies. See footnote 
iv for details.
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Table A.III.8 | Technical parameters and estimat+es for cost of conserved carbon of iron and steel production processesi

Optionsii
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Historical Global Average Data and Future Data for 450 ppm Scenarios from Integrated Models

Global average (2030)vii – – – – – – 0.92 – 1.36

Global average (2050) vii – – – – – – 0.47 – 0.84

Global average (2010) 1.8viii 820ix 0.46x 0 1.8 0.38 2.2

Currently Commercially Available Technologies

Advanced blast furnace routexi 1.3xii 350xiii 0.46x 0 1.3 0.16 1.5 < 0 – 150

Natural gas DRI routexiv, xi 0.7xii 590xiii 0.46x 0 0.7 0.27 0.97 50 – 150

Scrap based EAFxv, xi 0.25xii 350xiii 0.46x 0 0.25 0.16 0.41 < 0 – 50xvi

Decarbonization of electricity supply 1.8viii 820ix 0 – 0.39xvii 0 1.8 0 – 0.32 1.8 – 2.1

Pre-commercial Technologies

CCSxviii 1.8viii 820ix 0.46x 75 – 90 0.18 – 0.45 0.38 0.56 – 0.82 50 – 150

CCS and fully decarbonized electricityxix 1.8viii – 0 75 – 90 0.18 – 0.45 0 0.18 – 0.45

Note:
i	 Note that input data are included in normal font type, output data resulting from data conversions are bolded, and intermediate outputs are italicized.
ii	 Non-electric fuel mix improvements are not listed as an abatement option because a large share of the coal use in the iron and steel industry, via the intermediate production 

of coke, is an inherent feature of the blast furnace technology. The coke is used to reduce iron ore to iron and for structural reasons in the furnace. The limited data availability 
did not allow assessing the limited potential related to the part of the fuel use that can be substituted.

iii	 Direct CO2 emissions contain all emissions from steel production that are unrelated to electricity consumption.
iv	 As percentage of specific direct CO2 emissions in steel production.
v	 Direct CO2 emissions contain all emissions from steel production that are unrelated to electricity consumption.
vi	 Expert judgment based on McKinsey (2009; 2010), IEA (2009b, 2012a), BEE (2012) and others. The costs of the abatement options shown vary widely between individual 

regions and from plant to plant. Factors influencing the costs include typical capital stock turnover rates (some measures can only be applied when plants are replaced), rela-
tive energy costs, etc.

vii	 Data range is provided by AIM Enduse model (Akashi et al., 2013) DNE21+ (Sano et al., 2013a; b) and IEA 2DS low demand (IEA, 2012a).
viii	 IEA (2012a).
ix	 Derived from IEA (2012a, 2013b).
x	 Based on global industry-wide average CO2eq intensity of primary energy used in electricity and heat supply in 2010 (see Chapter 10, Table 10.2). This is a simplified calcula-

tion in line with the method used for other sectors ignoring the practice in many iron and steel plants to use process derived gases (blast furnace gas and basic oxygen 
furnace gas) for electricity production. The emissions from these derived gases are already included in the direct emissions.

xii	 Excluding rolling and finishing.
xii	 Value equals lower bound of total emission intensity in IEA (2007, p. 108, table 5.4) as that is for zero-carbon electricity.
xiii	 Derived from spread in total emission intensity in IEA (2007, p. 108, table 5.4) and using a typical coal emission factor of 0.85.
xiv	 DRI: Direct reduced iron.
xv	 EAF: Electric arc furnace.
xvi	 Costs depend heavily on the regional availability and price of scrap.
xvii	 The upper end of the range is based on natural gas combined cycle (NGCC) with an efficiency of 55 % and fuel emission factors from IPCC (2006). The approach taken here 

is a simplified calculation, consistent with the approach for other sectors and does not explicitly take into account the share of the electricity consumed that is produced with 
process derived gases (see also footnote ix).

xviii	 CCS: Carbon dioxide capture and storage. This option assumes no improvements in fuel mix.
xix	 This option assumes no improvements in non-electric fuel mix.
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Table A.III.9 | Technical parameters and estimates for cost of conserved carbon of chemicals production processes i

Options
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Historical Data and Future Data from IEA ETP 2DS Scenario

Global total (2030)v – – – 1400 – – 1.5 – 1.6 – –

Global total (2050)v – – – 1400 – – 1.3 – –

Global total (2010) 1.6vi 0.13 0.12 1100vii 0.46viii 0 1.6 0.51 2.4

Currently Commercially Available Technologies

Best practice energy intensity 1.0ix 0.13 0.12 860x 0.46viii 0 1.0 0.39 1.7 < 0 – 150

Enhanced recycling, cogeneration 
and process intensification 

1.3xi 0.13 0.12 1100vii 0.46viii 0 1.3 0.51 2.1 20 – 150

Abatement of N2O from 
nitric and adipic acid

1.6vi 0.13 0.01xii 1100vii 0.46viii 0 1.6 0.51 2.3 0 – 50

Abatement of HFC-23 emissions 
from HFC-22 production

1.6vi 0xiii 0.12 1100vii 0.46viii 0 1.6 0.51 2.2 0 – 20

Improvements in non-electric fuel mixxiv 1.2xv 0.13 0.12 1100vii 0.46viii 0 1.2 0.51 2.0 < 0 – 150

Decarbonization of electricity supply 1.6vi 0.13 0.12 1100vii 0 – 0.39xvi 0 1.6 0 – 0.44 1.8 – 2.3

Pre-commercial Technologies 

CCS for ammonia productionxvii 1.6vi 0.13 0.12 1100vii 0.46viii 3.5xviii 1.5 0.51 2,3 50 – 150

CCSxix 1.6vi 0.13 0.12 1100vii 0.46viii 75 – 90 0.16 – 0.4 0.51 0.92 – 1.16 50 – 150

CCS and fully decarbonized electricityxx 1.6vi 0.13 0.12 1100vii 0 75 – 90 0.16 – 0.4 0 0.41 – 0.65

Notes:
i	 Note that input data are included in normal font type, output data resulting from data conversions are bolded, and intermediate outputs are italicized.
ii	 Based on EPA (2013) unless specified otherwise.
iii	 As percentage of global direct CO2 emissions in chemicals production.
iv	 Expert judgment based on McKinsey (2009; 2010), IEA (2009c, 2012a), BEE (2012), and others. The costs of the abatement options shown vary widely between individual 

regions and from plant to plant. Factors influencing the costs include typical capital stock turnover rates (some measures can only be applied when plants are replaced), rela-
tive energy costs, etc.

v	 Based on IEA ETP 2DS scenarios with high and low global energy demand (IEA, 2012a).
vi	 Based on IEA (2012a).
vii	 Based on IEA (IEA, 2013b). IEA (2012a) provided higher values of 1340 TWh.
viii	 Based on global industry-wide average CO2eq intensity of primary energy used in electricity and heat supply in 2010 (see Chapter 10. Table 10.2).
ix	 Based on global potential for savings of 35 % in direct emissions in chemicals production as estimated for 2006 (IEA, 2009c) applied to direct emissions in 2010.
x	 Based on potential for electricity savings of 0.91 EJ (IEA, 2012a).
xi	 Based on global technical potential for saving in primary energy consumption of 4.74 EJ (IEA, 2012a) and assuming that conserved primary energy supply is based on natural 

gas with an emission factor of 56.2 kg CO2eq / GJ (2006). This translates into savings in global direct CO2 emissions of 0.27 GtCO2eq.
xii	 Based on a global technical potential to save 85 % of non-CO2 emissions from HFC-22 production (EPA, 2013).
xiii	 Based on a global technical potential to save 100 % of non-CO2 emissions from production of adipic and nitric acid (Miller and Kuijpers, 2011)
xiv	 This is assuming that only natural gas is used as non-electric fuel. Further reductions in non-electric fuel emission intensity are technically possible, e. g., by increased use of 

biomass.
xv	 Based on the assumption that 23 % of direct CO2 emissions can be saved from a switch to natural gas (IEA, 2009c).
xvi	 The upper end of the range is based on natural gas combined cycle (NGCC) with an efficiency of 55 % and fuel emission factors from IPCC (2006).
xvii	 Ammonia production was 159 Mt in 2010 (IEA, 2012a). According to Neelis et al. (2005), a best practice gas-based ammonia facility produces 1.6 tCO2 / t ammonia, of which 

70 % are pure CO2 emissions (1.1 t CO2 / t ammonia). 50 % of that pure CO2 stream is assumed to be used in urea production (0.55 t CO2 / t ammonia). 90 % of the remaining 
0.55 tCO2 / t ammonia is assumed to be captured. This results in an effective CO2 capture rate of 3.5 % of total emissions in chemicals by application of CCS in ammonia 
production.

xviii	 This is the effective rate of CO2 emissions captured in ammonia production relative to global direct CO2 emissions in chemicals. See also endnote xvii.
xix	 This option assumes no improvements in fuel mix.
xx	 This option assumes no improvements in non-electric fuel mix.
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A.III.4.2.4	 Pulp and paper

Specific direct CO2 emissions of paper (tCO2 / t paper) are derived from 
technical parameters via the following equation:

E​I​direct​ = (1 − λ) · E​I​direct,noCCS​� (Equation A.III.22)

Where

•	 λ is the percentage of emissions captured and stored via CCS
•	 EIdirect,noCCS is the direct emission intensity without CCS

Indirect specific CO2 emissions of paper (tCO2 / t paper) are derived from 
specific electricity use and the carbon intensity of electricity:

E​I​indirect​ = ​e​el​ · FC​I​el​� (Equation A.III.23)

Where

•	 eel is the specific electric energy use, i. e., the electricity use per 
tonne of paper

•	 FCIel is the carbon intensity of the electricity used

Total specific CO2 emissions of paper (tCO2 / t paper) are the sum of 
both direct and indirect specific emissions:

E​I​total​ = E​I​direct​ + E​I​indirect​� (Equation A.III.24)

Remarks:

For most production practices, only central estimates for technical 
input parameters could be derived from the available literature. Where 
input parameters are set by assumption, they are varied within typi-
cal ranges and become a source of variation in output values. Where 
no variation in input parameters could be derived from the literature, 
output ranges have been constructed as an interval around the mean 
value based on + / -10 % of the respective savings.

Specific mitigation costs (cost of conserved carbon) are estimated 
based on expert assessment of limited selected studies. See footnote 
v for details.

A.III.4.2.5	 Municipal Solid Waste (MSW)

For waste treatment practices that reduce landfill, specific methane 
emission (gCH4 / kg MSW) and specific nitrous oxide emissions (gN2O / kg 
MSW) are taken directly from the literature. Methane emission intensi-
ties (gCH4 / kg MSW) of conventional and improved landfill options are 
derived from technical parameters given below. CO2eq emission inten-
sities (tCO2eq / t MSW) are calculated using global warming potentials 
(GWP) of methane and nitrous oxide of 21 and 310, respectively.

E​I​CH4​ = MCF · DOC · DOCf · F · (1 − OX) · (1 − R) · γ · η​
� (Equation A.III.25)

Where

•	 MCF is the methane correction factor, Min(MCF) = 0.6, 
Max(MCF) = 1

•	 DOC is degradable organic carbon (gC / kg MSW)
•	 DOCf is the fraction of DOC dissimilated, DOCf = 0.5
•	 F is the fraction of methane in landfill gas, F = 0.5
•	 OX is oxidation factor (fraction)
•	 R is the fraction of recovered methane 
•	 γ is the unit conversion factor of C into CH4, γ = 16 / 12
•	 η is a unit conversion factor of 1 / 1000

Values given above are based on Frøiland Jensen and Pipatti (2001) 
and Pipatti et al. (2006) default values.

Variation in specific emissions is from maximum to minimum assuming 
all input parameters are independently distributed.

Cost are taken from EPA (2013) and based on a 10 % WACC.
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Table A.III.10 | Technical parameters and estimates for cost of conserved carbon of pulp and paper production processesi

Options
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Historical Data and Future Data from IEA ETP 2DS Scenario

Global average (2030) vi – 990 – 1100vii – – 0.26 – 0.30vii – –

Global average (2050) vi – 920 – 950vii – – 0.16 – 0.20vii – –

Global average (2010) 0.56viii 1,200ix 0.46x 0 0.56 0.55 1,1

Currently Commercially Available Technologies

Best practice energy intensity 0.48xi 1,000xii 0.46x 0 0.48 0.46 0.94 < 0 – 150

Co-generation 0.53xiii 1,200ix 0.46x 0 0.53 0.55 1.1 20 – 50

Decarbonization of electricity supply 0.56viii 1,200ix 0 – 0.39xiv 0 0.56 0 – 0.47 0.56 – 1,0

Pre-commercial Technologies

CCSxv 0.56viii 1,200ix 0.46x 75 – 90 0.056 – 0.14 0.55 0.61 – 0.69 50 – 150

CCS and fully decarbonized electricityxvi 0.56viii 1,200ix 0 – 0.39 75 – 90 0.056 – 0.14 0 – 0.47 0.056 – 0.14

Notes:
i	 Note that input data are included in normal font type, output data resulting from data conversions are bolded, and intermediate outputs are italicized.
ii	 Direct CO2 emissions w / o CCS contain all emissions from paper production that are unrelated to electricity consumption, including those that could be captured and stored.
iii	 As percentage of specific direct CO2 emissions in steel production.
iv	 Direct CO2 emissions w / CCS contain all non-captured emissions from paper production that are unrelated to electricity consumption.
v	 Expert judgment based on McKinsey (2009; 2010), IEA (2009b, 2012a), BEE (2012), and others. The costs of the abatement options shown vary widely between individual 

regions and from plant to plant. Factors influencing the costs include typical capital stock turnover rates (some measures can only be applied when plants are replaced), rela-
tive energy costs, etc.

vi	 Based on IEA ETP 2DS scenarios with high and low global energy demand (IEA, 2012a).
vii	 Derived from IEA (2012a).
viii	 Based on global direct emissions of 0.22 GtCO2 and global paper production of 395 Mt (IEA, 2012a).
ix	 Based on global electricity consumption in pulp and paper production of 1.7 EJ (IEA, 2013b) and global paper production of 395 Mt (IEA, 2012a).
x	 Based on global industry-wide average CO2eq intensity of primary energy used in electricity and heat supply in 2010 (see Chapter 10. Table 10.2).
xi	 Based on technical potential for savings in non-electric fuel input of 1.5 GJ / t paper (IEA, 2012a) and assuming no change in the non-electric fuel emission factor of 51 kg 

CO2 / GJ (derived from IEA, 2012a). This translates into savings in specific direct CO2 emissions of 77 kg CO2 / t paper.
xii	 Based on technical potential for saving electricity of 200 kWh / t paper (IEA, 2012a).
xiii	 Based on technical potential for savings in non-electric fuel input of 0.6 GJ / t paper (derived from IEA, 2012a) and assuming that conserved fuel is natural gas with an emis-

sion factor of 56.2 kg CO2eq / GJ (IPCC, 2006). This translates into savings in specific direct CO2 emissions of 34 kg CO2 / t paper.
xiv	 The upper end of the range is based on natural gas combined cycle (NGCC) with an efficiency of 55 % and fuel emission factors from IPCC (2006).
xv	 This option assumes no improvements in fuel mix.
xvi	 This option assumes no improvements in non-electric fuel mix.
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Table A.III.11 | Technical parameters and estimates for cost of conserved carbon of waste treatment practicesi

Options
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min / max min / max min / max min / max min / max

Reference: Landfill at MSW disposal site 140 / 210 0 0 42 / 110 ~0 0.58 / 1.5

Reducing MSW landfill

Composting – – – 0.0 / 8 0.06 / 0.6 0.019 / 0.35 – 140 / 470

Anaerobic digestion – – – 0 / 1 / 8 ~0 0 / 0.17 150 / 590

Improving MSW landfill practices

Biocover 140 / 210 0.8vi 0 8.5 / 21 ~0 0.12 / 0.19 99 / 100

In-situ aeration 140 / 210 0.9 0 4.2 / 11 ~0 0.058 / 0.10 99 / 130

Flaring 140 / 210 0 0.6 / 0.85 6.4 / 43 ~0 0.087 / 0.35 5.0 / 58

CH4 capture for power generation 140 / 210 0 0.6 / 0.9 4.2 / 43 ~0 0.058 / 0.35 – 37 / 66

CH4 capture for heat generation 140 / 210 0 0.6 / 0.9 4.2 / 43 ~0 0.058 / 0.35 – 70 / 89

Notes:
i	 Note that input data are included in normal font type, output data resulting from data conversions are bolded, and intermediate outputs are italicized.
ii	 On wet weight basis.
iii	 Total DOC derived from estimates for regional composition of wastes and fraction of DOC in each type of waste (Pipatti et al., 2006, Tables 2.3 and 2.4).
iv	 Methane emissions intensity of reference and improved landfill practices is based on Frøiland Jensen and Pipatti (2001, Table 3) and approach above, which is based on equa-

tion 1 of aforementioned source. Methane emission intensity and nitrous oxide emissions intensity of reduced landfill options is based on IPCC (2006).
v	 Based on EPA (2013).
vi	 Based on EPA (2006).
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A.III.4.2.6	 Domestic wastewater

Specific CO2eq emissions of wastewater (tCO2 / t BOD5) are based on 
IPCC (2006) using the following equation to convert methane emis-
sions.

E​I​CO2e​ = MA​X​CH4​ · MCF · GW​P​CH4​� (Equation A.III.26)

Where

•	 MAXCH4 is the maximum CH4 production
•	 MCF is the methane correction factor
•	 GWPCH4 is the global warming potential of methane, GW​P​CH4​ = 21

The levelized cost of conserved carbon is taken directly from EPA 
(2013). The discount rate used by EPA (2013) to derive these values 
was 10 %.

A.III.5	 AFOLU

A.III.5.1	 Introduction

Figure 11.16 shows ranges for baseline emission intensities of selected 
agricultural and forestry commodities, emission intensities after appli-
cation of mitigation options, and specific mitigation costs.

A.III.5.2	 Approach

Commodity definitions are taken from the FAOSTAT (2013) database, 
where ‘cereals’ is the aggregation of 16 cereal crops, ‘rice’ is paddy 
rice, ‘milk’ is whole, fresh milk from dairy cows, ‘meat’ is meat from 
cattle only, and wood is ‘roundwood’. 

A.III.5.2.1	 Baseline Emission Intensities

Baseline emission intensities represent the minimum and maximum of 
regional averages for five world regions. For agricultural commodities 
(rice, cereals, milk, and meat), they are calculated based on 11-year 
averages (2000 – 2010) of total annual CO2eq emissions and total 
annual production volumes per region taken from (FAOSTAT, 2013). 
The following emission categories are considered for the calculation of 
baseline emission intensities: ‘synthetic fertilizer’ for cereals, ‘rice culti-
vation’ for paddy rice, and ‘enteric fermentation’ and ‘manure manage-
ment’ for milk and meat.

For production of roundwood only afforestation and reforestation of 
idle land is considered. Hence, baseline emission intensities are set to 
zero.

A.III.5.2.2	 Improved emission intensities

Improved emission intensities are derived by deducing product-specific 
mitigation potentials from baseline emission intensities.

Table A.III.12 | Technical parameters and estimates for cost of conserved carbon of wastewater treatment practices.i

Options

MAXCH4 MCF EICO2e LCCC

Maximum CH4 production 
(kg CH4 / kg BOD5

ii)iii

Methane Correction 
Factor (fraction) iii

CO2eq emission intensity 
(tCO2 / t BOD5)

Levelized cost of conserved 
carbon (USD2010 / tCO2eq)iv

Untreated system: Stagnant 
sewer (open and warm)v

0.6 0.4 – 0.8 5 – 10 –

Aerobic wastewater plant (WWTP)vi 0.6 0.2 – 0.4 2.5 – 5 0 – 530

Centralized wastewater collection and WWTPvii 0.6 0 – 0.1 0 – 1.3 0 – 530

Aerobic biomass digester with CH4 collectionviii 0.6 0 – 0.1 0 – 1.3 0 – 530

Notes:
i	 Note that input data are included in normal font type, output data resulting from data conversions are bolded, and intermediate outputs are italicized.
ii	 BOD: Biochemical Oxygen Demand. The amount of dissolved oxygen that biological organisms need in order to break down organic material into CH4. For domestic wastewa-

ter this value is in the range of 110 – 400 mg / l.
iii	 Based on IPCC (2006). N2O emission are neglected, since they do not play a significant role in emissions from domestic wastewater.
iv	 These values are directly taken from EPA (2013). They are relative to regional baselines.
v	 Untreated wastewater that is stored in a stagnant sewer under open and warm conditions.
vi	 Aerobic wastewater treatment refers to the removal of organic pollutants in wastewater by bacteria that require oxygen to work. Water and carbon dioxide are the end 

products of the aerobic wastewater treatment process.
vii	 Centralized wastewater collection improves the reduction efficiency. Processes are the same as for the aerobic treatment plant. Centralized collection of wastewater assumes 

that in general an infrastructure was established that ensures local wastewater storage in closed tanks and secures (emission impermeable) transport from production site to 
treatment plant.

viii	 Anaerobic wastewater treatment is a process whereby bacteria digest bio-solids in the absence of oxygen.
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Mitigation options considered in the derivation of product-specific 
mitigation potentials include ‘improved agronomic practices’, ‘nutrient 
management’, ‘tillage and residue management’ and ‘agroforestry’ for 
cereals; ‘rice land management’ for rice; ‘feeding’ and ‘dietary addi-
tives’ for milk and meat production; and ‘afforestation and reforesta-
tion’ for roundwood production.

For cereals and paddy rice, data on mitigation potentials is provided by 
Smith et al. (2008) as average amount of CO2eq sequestered per land 
area for four climate zones. These values are converted into amounts 
of CO2eq sequestered per product by multiplication with global aver-
age product yields per land area based on FAOSTAT (2013).

For meat and milk, mitigation potentials are provided by Smith et  al. 
(2008) as percentage reductions in emissions per mitigation option (see 
above) and region for five geographical regions. Minimum, average, and 
maximum of five regional values per mitigation option are taken and 
converted into amounts of CO2eq sequestered per product by multiplica-
tion with an unweighted average of regional averages of emissions from 
enteric fermentation per product derived from FAOSTAT (2013). The deri-

vation of the latter is done by dividing the 11-year (2000 – 2010) regional 
averages of emissions from enteric fermentation per commodity by the 
corresponding 11-year regional averages of the total number of produc-
ing animals for five geographical regions and by subsequently taking 
the unweighted average of those five regional averages. For roundwood, 
the carbon sequestration potential is calculated for representative tree 
species (based on FAO (2006) and IPCC (2006)) which match the rota-
tion periods for short-term rotations given by Sathaye et al. (2006) for 
ten geographical regions. Regional and country averages are calculated 
based on the highest and lowest values for the ten geographical regions. 

A.III.5.2.3	 Levelized cost of conserved / sequestered 
carbon

Mitigation costs for agricultural mitigation options are taken from 
Smith et al. (2008) for cereals and paddy rice, and from US-EPA (2013) 
for milk and meat. For the livestock mitigation options, only the low 
end of the given cost range is considered. Costs for afforestation and 
reforestation are based on Sathaye et al. (2006).
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